首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hematopoietic stem cells (HSC) isolated from umbilical cord blood (UCB) were treated with ionizing radiation (IR) and sensitivity and IR induced checkpoints activation were investigated. No difference in the sensitivity and in the activation of DNA damage pathways was observed between CD133+ HSC and cells derived from them after ex vivo expansion. Chk1 protein was very low in freshly isolated CD133+ cells, and undetectable in ex vivo expanded UCB CD133+ cells. Chk1 was expressed only on day 3 of the ex vivo expansion. This pattern of Chk1 expression was corroborated in CD133+ cells isolated from peripheral blood apheresis collected from an healthy donor. Treatment with a specific Chk1 inhibitor resulted in a strong reduction in the percentage of myeloid precursors (CD33+) and an increase in the percentage of lymphoid precursors (CD38+) compared to untreated cells, suggesting a possible role for Chk1 in the differentiation program of UCB CD133+ HSC.  相似文献   

2.
目的探讨人结直肠肿瘤干细胞在体外分化过程中细胞形态和干细胞相关标志物CD133的表达变化,为进一步研究结直肠肿瘤干细胞分化走向提供实验依据。方法取来源于人结直肠癌的细胞系HCT116,无血清培养分离出CD133+细胞,加血清诱导分化,相差显微镜下观察其形态变化;在未分化状态下无血清培养第7天和14天与血清诱导分化后收集细胞,利用流式细胞仪检测干细胞标志物CD133的表达量,采用激光共聚焦检测CD133表面标记分子的表达。结果 1)细胞形态:无血清培养分离的CD133+细胞,在生长过程中聚集成规则的细胞球,血清诱导后即贴壁生长,贴壁形态与同来源细胞形态一致,且再次无血清悬浮培养后聚集成球稳定生长。2)标志物变化:结直肠肿瘤干细胞未分化时CD133表面标记分子高表达,流式细胞仪检测未分化细胞CD133第7天表达率为(20.4±0.52)%,第14天表达率为(78.5±2.80)%,分化后表达率为(0.50±0.17)%。结论细胞形态和标志物表达改变均表明高表达CD133+的HCT116结直肠癌肿瘤干细胞可定向分化为同源的结直肠癌细胞,CD133+细胞经血清诱导后表达下调而使细胞失去干细胞特性。  相似文献   

3.
Stem cells and their niche: a matter of fate   总被引:4,自引:0,他引:4  
Embryonic stem cells provide an in vitro model for developmental biologists to study cell fate decisions during ontogenesis, while somatic stem cells allow physiologists to understand tissue homeostasis in the adult. The behavior of stem cells is dependent on an intimate relationship with a supportive niche. This brief review highlights some of the most important recent trends in stem cell biology, focusing in particular on the supportive microenvironments for both embryonic and adult stem cells. Known intrinsic and extrinsic molecular players from the best-characterized stem cell types are summarized, illuminating a number of shared environmental cues among tissues originating from all three embryonic germ layers. Received 6 October 2005; received after revision 27 December 2005; accepted 17 January 2006  相似文献   

4.
Neuropathic pain is a very complex disease, involving several molecular pathways. Current available drugs are usually not acting on the several mechanisms underlying the generation and propagation of pain. We used spared nerve injury model of neuropathic pain to assess the possible use of human mesenchymal stem cells (hMSCs) as anti-neuropathic tool. Human MSCs were transplanted in the mouse lateral cerebral ventricle. Stem cells injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored 7, 10, 14, 17, and 21 days after surgery. hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once transplanted in cerebral ventricle. Anti-nociceptive effect was detectable from day 10 after surgery (6 days post cell injection). Human MSCs reduced the mRNA levels of the pro-inflammatory interleukin IL-1β mouse gene, as well as the neural β-galactosidase over-activation in prefrontal cortex of SNI mice. Transplanted hMSCs were able to reduce astrocytic and microglial cell activation.  相似文献   

5.
Mesenchymal stem cells (MSCs) have been shown to communicate with tumor cells. We analyzed the effect of human MSCs (hMSCs) on breast cancer cells in three-dimensional cultures. By using GFP expression and immunohistochemistry, we show that hMSCs invade 3D breast cancer cell aggregates. hMSCs caused breast cancer spheroids to become disorganized which was accompanied by a disruption of cell–cell adhesion, E-cadherin cleavage, and nuclear translocation of E-cadherin, but not by epithelial/mesenchymal transition or by an increase in ERK1/2 activity. In addition, hMSCs enhanced the motility of breast cancer cells. Inhibition of ADAM10 (a disintegrin and metalloprotease 10), known to cleave E-cadherin, prevented both hMSC-mediated E-cadherin cleavage and enhanced migration. Our data suggest that hMSCs interfere with cell–cell adhesion and enhance migration of breast cancer cells by activating ADAM10.  相似文献   

6.
Among the heterogeneous population of circulating hematopoietic and endothelial progenitors, we identified a subpopulation of CD133+ cells displaying myogenic properties. Unexpectedly, we observed the expression of the B-cell marker CD20 in blood-derived CD133+ stem cells. The CD20 antigen plays a role in the modulation of intracellular calcium homeostasis through signaling pathways activation. Several observations suggest that an increase in intracellular calcium concentration ([Ca2+]i) could be involved in the etiology of the Duchenne muscular dystrophy (DMD). Here, we show that a CD20-related signaling pathway able to induce an increase in [Ca2+]i is differently activated after brain derived neurotrophic factor (BDNF) stimulation of normal and dystrophic blood-derived CD133+ stem cells, supporting the assumption of a “CD20-related calcium impairment-affecting dystrophic cells. Presented findings represent the starting point toward the expansion of knowledge on pathways involved in the pathology of DMD and in the behavior of dystrophic blood-derived CD133+ stem cells. Received 15 October 2008; received after revision 27 November 2008; accepted 05 December 2008  相似文献   

7.
Microfracture of subchondral bone results in intrinsic repair of cartilage defects. Stem or progenitor cells from bone marrow have been proposed to be involved in this regenerative process. Here, we demonstrate for the first time that mesenchymal stem (MS) cells can in fact be recovered from matrix material saturated with cells from bone marrow after microfracture. This also introduces a new technique for MS cell isolation during arthroscopic treatment. MS cells were phenotyped using specific cell surface antibodies. Differentiation of the MS cells into the adipogenic, chondrogenic and osteogenic lineage could be demonstrated by cultivation of MS cells as a monolayer, as micromass bodies or mesenchymal microspheres. This study demonstrates that MS cells can be attracted to a cartilage defect by guidance of a collagenous matrix after perforating subchondral bone. Protocols for application of MS cells in restoration of cartilage tissue include an initial invasive biopsy to obtain the MS cells and time-wasting in vitro proliferation and possibly differentiation of the cells before implantation. The new technique already includes attraction of MS cells to sites of cartilage defects and therefore may overcome the necessity of in vitro proliferation and differentiation of MS cells prior to transplantation. Received 3 November 2005; received after revision 15 December 2005; accepted 4 January 2006  相似文献   

8.
The isolation of human epidermal stem cells is critical for their clinical applications. In the present study, we isolated three populations of epidermal keratinocytes according to their ability to adhere to collagen type IV: i.e., rapidly adhering (RA), slowly adhering (SA), and non-adhering (NA) cells. The aim of this study was to characterize RA cells and to investigate the possibility of using these cells for epidermis reconstruction. To identify RA cells, flow cytometric analysis was performed using anti-6 integrin and anti-CD71 antibodies. RA cells express high levels of 6 integrin and low levels of CD71, which are considered as markers of an epidermal stem cell nature. Furthermore, electron microscopy showed that RA cells are small and have a high nuclear to cytoplasmic ratio, whereas SA and NA cells have well-developed cellular organelles and abundant tonofilaments. Western blot analysis showed that RA cells are slow cycling and express p63, a putative epidermal stem cell marker, whereas SA and NA cells express c-Myc, which is known to regulate stem cell fate. To compare epidermal regenerative abilities, skin equivalents (SEs) were made using RA, SA, and NA cells. The epidermis constructed from RA cells was well formed compared to those formed from SA or NA cells. In addition, only SEs with RA cells expressed 6 integrin and 1 integrin at the basal layer. These results indicate that RA cells represent epidermal stem cells and are predominately comprised of stem cells. Therefore, the isolation of RA cells using a simple technique offers a potential route to their clinical application, because they are easily isolated and provide a high yield of epidermal stem cells.Received 2 July 2004; received after revision 20 August 2004; accepted 10 September 2004  相似文献   

9.
In mouse embryonic stem (mES) cells, the expression of p27 is elevated when differentiation is induced. Using mES cells lacking p27 we tested the importance of p27 for the regulation of three critical cellular processes: proliferation, differentiation, and apoptosis. Although cell cycle distribution, DNA synthesis, and the activity of key G1/S-regulating cyclin-dependent kinases remained unaltered in p27-deficient ES cells during retinoic acid-induced differentiation, the amounts of cyclin D2 and D3 in such cells were much lower compared with normal mES cells. The onset of differentiation induces apoptosis in p27-deficient cells, the extent of which can be reduced by artificially increasing the level of cyclin D3. We suggest that the role of p27 in at least some differentiation pathways of mES cells is to prevent apoptosis, and that it is not involved in slowing cell cycle progression. We also propose that the pro-survival function of p27 is realized via regulation of metabolism of D-type cyclin(s).Received 25 February 2004; received after revision 5 April 2004; accepted 15 April 2004  相似文献   

10.
The high-affinity Na+-dependent carnitine transporter OCTN2 (SLC22A5) has a high renal expression and reabsorbs most filtered carnitine. To gain more insight into substrate specificity of OCTN2, we overexpressed hOCTN2 in L6 cells and characterized the structural requirements of substances acting as human OCTN2 (hOCTN2) inhibitors. A 1905-bp fragment containing the hOCTN2 complete coding sequence was introduced into the pWpiresGFP vector, and L6 cells were stably transduced using a lentiviral system. The transduced L6 cells revealed increased expression of hOCTN2 on the mRNA, protein and functional levels. Structural requirements for hOCTN2 inhibition were predicted in silico and investigated in vitro. Essential structural requirements for OCTN2 inhibition include a constantly positively charged nitrogen atom and a carboxyl, nitrile or ester group connected by a 2-4-atom linker. Our cell system is suitable for studying in vitro interactions with OCTN2, which can subsequently be investigated in vivo.  相似文献   

11.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which regulates multiple biological parameters in a number of cell types, including stem cells. Here we report, for the first time, that S1P dose-dependently stimulates differentiation of adipose tissue-derived mesenchymal stem cells (ASMC) towards smooth muscle cells. Indeed, S1P not only induced the expression of smooth muscle cell-specific proteins such as α-smooth muscle actin (αSMA) and transgelin, but also profoundly affected ASMC morphology by enhancing cytoskeletal F-actin assembly, which incorporated αSMA. More importantly, S1P challenge was responsible for the functional appearance of Ca2+ currents, characteristic of differentiated excitable cells such as smooth muscle cells. By employing various agonists and antagonists to inhibit S1P receptor subtypes, S1P2 turned out to be critical for the pro-differentiating effect of S1P, while S1P3 appeared to play a secondary role. This study individuates an important role of S1P in AMSC which can be exploited to favour vascular regeneration. Received 06 March 2009; accepted 17 March 2009  相似文献   

12.
Control of mammalian gene promoters by the bacterial LacI repressor provides reversible regulation and dose-response levels of derepressed expression by the lactose analog isopropyl thiogalactose (IPTG). Here, we show that insertion of LacI-binding sites in the ubiquitous β-actin promoter confers a strong and dose-dependent IPTG-regulatable expression of transiently transfected reporter genes in mouse embryonic stem (ES) cells expressing LacI. We established ES cell lines stably expressing reporter genes under inducible control and found a five- to tenfold IPTG induction of transgene expression. The kinetics of induction is rapid and stable, and can be rapidly reversed after IPTG removal. Importantly, this regulatable expression was maintained throughout the differentiation process of ES cells, and observed in individual differentiated cardiomyocyte-like cells and neuronal-like cells. This reversible system is the first to function from undifferentiated to individual welldifferentiated ES cells, providing a very useful tool to understand molecular mechanisms underlying ES cell self-renewal, commitment and differentiation.Received 17 March 2005; received after revision 19 April 2005; accepted 25 April 2005  相似文献   

13.
Recent animal and clinical studies report promising results for the therapeutic utilization of stem cells in regenerative medicine. Mesenchymal stem cells (MSCs), with their pluripotent nature, have advantages over embryonic stem cells in terms of their availability and feasibility. However, their proliferative activity is destined to slow by replicative senescence, and the limited proliferative potential of MSCs not only hinders the preparation of sufficient cells for in vivo application, but also draws a limitation on their potential for differentiation. This calls for the development of safe and efficient means to increase the proliferative as well as differentiation potential of MSCs. Recent advances have led to a better understanding of the underlying mechanisms and significance of cellular senescence, facilitating ways to manipulate the replicative lifespan of a variety of primary cells, including MSCs. This paper introduces a class of proteins that function as senescence suppressors. Like tumor suppressors, these proteins are lost in senescence, while their forced expression delays the onset of senescence. Moreover, treatments that increase the expression or the activity of senescence suppressors, therefore, cause expansion of the replicative and differentiation potential of MSCs. The nature of the activities and putative underlying mechanisms of the senescence suppressors will be discussed to facilitate their evaluation.  相似文献   

14.
In the past, clinical trials transplanting bone marrow–derived mononuclear cells reported a limited improvement in cardiac function. Therefore, the search for stem cells leading to more successful stem cell therapies continues. Good candidates are the so-called cardiac stem cells (CSCs). To date, there is no clear evidence to show if these cells are intrinsic stem cells from the heart or mobilized cells from bone marrow. In this study we performed a comparative study between human mesenchymal stem cells (hMSCs), purified c-kit+ CSCs, and cardiosphere-derived cells (CDCs). Our results showed that hMSCs can be discriminated from CSCs by their differentiation capacity towards adipocytes and osteocytes and the expression of CD140b. On the other hand, cardiac progenitors display a greater cardiomyogenic differentiation capacity. Despite a different isolation protocol, no distinction could be made between c-kit+ CSCs and CDCs, indicating that they probably derive from the same precursor or even are the same cells.  相似文献   

15.
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.  相似文献   

16.
目的研究CD133在人肝癌细胞系Hep3B中的表达以及CD133+细胞的体外增殖、自我更新及体内成瘤能力,初步探讨肝癌中CD133+细胞亚群的干细胞特性。方法流式细胞仪检测未分选的Hep3B细胞中CD133+细胞表达情况;免疫磁珠分选技术纯化CD133+肿瘤细胞;MTT法检测CD133+细胞体外增殖能力;无血清培养纯化...  相似文献   

17.
Cancer stem cells (CSCs) play an important role in the development, invasion, and drug resistance of carcinoma, but the exact phenotype and characteristics of ovarian CSCs are still disputable. In this study, we identified cancer stem cell-like cells (CSC-LCs) and investigated their characteristics from the ovarian adenocarcinoma cell line 3AO. Our results showed that CSC-LCs were enriched in sphere-forming test and highly expressed CD44+CD24. The spheres and CD24 cells possessed strong tumorigenic ability by transplantation into nonobese diabetic/severe combined immunodeficient mice. CD44+CD24 cells expressed stem cell markers and differentiated to CD44+CD24+ cells by immunofluorescence assay and fluorescence-activated cell-sorting analysis. In vitro experiments verified that CD44+CD24 cells were markedly resistant to carboplatin and paclitaxol. In conclusion, our study identifies the CD44+CD24 phenotype, self-renewal, high tumorigenicity, differentiation potential, and drug resistance of ovarian CSC-LCs. Our findings may provide the evidence needed to explore a new strategy in the treatment of ovarian cancer.  相似文献   

18.
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.  相似文献   

19.
Neural stem cells (NSCs) in the adult mammalian brain proliferate and continuously produce new neurons. To date, there has been little research into the functions of lectins in adult NSCs. Recently, we reported that a lectin, galectin-1, is expressed on adult NSCs and promotes their proliferation through its carbohydrate-binding ability. This evidence raises the possibility that glycans play roles in the proliferation of adult NSCs. Received 6 November 2006; received after revision 13 December 2006; accepted 15 February 2007  相似文献   

20.
目的运用3种不同的方法分离纯化人结肠癌CW-2干细胞,并对其分离纯化效率进行比较,探讨获得癌干细胞的有效方法。方法采用单纯无血清悬浮培养、无血清悬浮培养联合化疗药物、流式细胞分选技术分别富集人结肠癌细胞株CW-2干细胞;然后运用流式细胞术、NOD—SCID小鼠致瘤实验和Transwell侵袭实验分析比较3种方法的富集效率。结果无血清悬浮培养细胞.无血清悬浮培养联合化疗药物处理细胞和流式细胞仪分选技术分选后细胞中具有结肠癌干细胞特性的CD44+EPCAM_细胞分别为(59.39±4.55)%、(74.36±6.78)%、(86.43±8.43)%;3群细胞的成瘤能力和侵袭能力都存在显著统计学差异(P值〈0.05):流式细胞分选技术分选后细胞〉无血清悬浮培养联合化疗药物处理细胞〉单纯无血清悬浮培养细胞。结论流式细胞分选技术富集癌干细胞的能力强于单纯无血清悬浮培养和无血清悬浮培养联合化疗药物,无血清悬浮培养联合化疗药物又强于单纯无血清悬浮培养。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号