首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.  相似文献   

2.
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.  相似文献   

3.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

4.
5.
6.
The present study identified aloe-emodin (AE, a hydroxyanthraquinone from Aloe vera and other plants) as a new anti-angiogenic compound with inhibitory effects in an in vivo angiogenesis assay and evaluates its effects on specific key steps of the angiogenic process. AE inhibits endothelial cell proliferation, but this effect is not cell specific, since AE also inhibits tumor cell proliferation. Cell migration and invasion are not remarkably affected by AE. On the other hand, AE has different effects on endothelial and tumor cell gelatinases. Two main targets of the pharmacological action of AE as an anti-angiogenic compound seem to be urokinase secretion and tubule formation of endothelial cells. Finally, AE produces a remarkable photocytotoxic effect on tumor cells. Taken together, our data indicate that AE can behave both as an anti-tumor and an anti-angiogenic compound and suggest that AE could be a candidate drug for photodynamic therapy. Received 7 September 2006; received after revision 17 October 2006; accepted 31 October 2006  相似文献   

7.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.  相似文献   

8.
The mammalian target of rapamycin (mTOR) pathway is a central controller of growth and homeostasis, and, as such, is implicated in disease states where growth is deregulated, namely cancer, metabolic diseases, and hamartoma syndromes like tuberous sclerosis complex (TSC). Accordingly, mTOR is also a pivotal regulator of the homeostasis of several distinct stem cell pools in which it finely tunes the balance between stem cell self-renewal and differentiation. mTOR hyperactivation in neural stem cells (NSCs) has been etiologically linked to the development of TSC-associated neurological lesions, such as brain hamartomas and benign tumors. Animal models generated by deletion of mTOR upstream regulators in different types of NSCs reproduce faithfully some of the TSC neurological alterations. Thus, mTOR dysregulation in NSCs seems to be responsible for the derangement of their homeostasis, thus leading to TSC development. Here we review recent advances in the molecular dissection of the mTOR cascade, its involvement in the maintenance of stem cell compartments, and in particular the implications of mTOR hyperactivation in NSCs in vivo and in vitro.  相似文献   

9.
The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain.  相似文献   

10.
Multipotent adult stem cells capable of developing into particular neuronal cell types have great potential for autologous cell replacement therapy for central nervous system neurodegenerative disorders and traumatic injury. Bone marrow-derived stromal mesenchymal stem cells (BMSCs) appear to be attractive starting materials. One question is whether BMSCs could be coaxed to differentiate in vitro along neuronal or glial lineages that would aid their functional integration post-transplantation, while reducing the risk of malignant transformation. Recent works suggest that BMSCs could indeed be differentiated in vitro to exhibit some cellular and physiological characteristics of neural cell lineages, but it is not likely to be achievable with simple chemical treatments. We discussed recent findings pertaining to efforts in neuronal differentiation of BMSCs in vitro, and results obtained when these were transplanted in vivo. Received 19 January 2006; received after revision 24 February 2006; accepted 12 April 2006  相似文献   

11.
Autotaxin is a secreted cell motility-stimulating exo-phosphodiesterase with lysophospholipase D activity that generates bioactive lysophosphatidic acid. Lysophosphatidic acid has been implicated in various neural cell functions such as neurite remodeling, demyelination, survival and inhibition of axon growth. Here, we report on the in vivo expression of autotaxin in the brain during development and following neurotrauma. We found that autotaxin is expressed in the proliferating subventricular and choroid plexus epithelium during embryonic development. After birth, autotaxin is mainly found in white matter areas in the central nervous system. In the adult brain, autotaxin is solely expressed in leptomeningeal cells and oligodendrocyte precursor cells. Following neurotrauma, autotaxin is strongly up-regulated in reactive astrocytes adjacent to the lesion. The present study revealed the cellular distribution of autotaxin in the developing and lesioned brain and implies a function of autotaxin in oligodendrocyte precursor cells and brain injuries. Received 18 September 2006; received after revision 30 October 2006; accepted 4 December 2006  相似文献   

12.
Dendritic cells (DC) are specialized antigen-presenting cells. Bone marrow monocytes have been widely used to generate murine myeloid DC. We found that mouse macrophages derived from bone marrow CD11b+ monocytes influenced the differentiation of these precursors into DC. Modulation of differentiation was demonstrated by the down-regulation of CD11c, CD40, and CD86 expression and by IL-12 production. DC differentiated in the presence of conditioned medium from bone marrow-derived macrophage culture (MCM) had impaired ability to stimulate proliferation of, and IFN- γ production by, allogeneic CD4+ T cells. This inhibition of DC differentiation was mainly mediated by secretory products from macrophages but not by cell-cell contact. MCM contained higher concentrations of macrophage-colony-stimulating factor (M-CSF), IL-10, and TGF- β1, whereas IL-6 remained unchanged compared with conditioned medium from fresh monocytes. M-CSF may be the major mediator in MCM inhibiting DC differentiation. This study demonstrates an important influence of bone marrow-derived macrophages on DC precursors during DC differentiation. Received 12 September 2006; received after revision 20 October 2006; accepted 13 November 2006  相似文献   

13.
Myeloproliferative disorders (MPDs) are clonal haematopoietic malignancies involving the abnormal proliferation of myeloid lineages. The World Health Organisation (WHO) classification of haematopoietic malignancies distinguishes MPDs from myelodysplastic/ myeloproliferative disorders and systemic mastocytosis. These malignancies frequently involve constitutive tyrosine kinase activity, resulting from either oncogenic fusion protein production or from point mutations. Chronic myelogenous leukaemia is the model used for studies of the consequences of such molecular defects. However, the heterogeneity of the clinical course of MPDs should be seen in a more rationale conceptual framework, including the many molecular events associated with these diseases. This review focuses on the various tyrosine kinase-related molecular mechanisms underlying both MPDs and rare diseases with myeloproliferative features. We pay particular attention to the newly identified JAK2 V617F mutation in polycythaemia vera, essential thrombocythaemia and idiopathic myelofibrosis and deal with disease heterogeneity and putative additional molecular mechanisms. Received 9 June 2006; received after revision 28 July 2006; accepted 11 September 2006  相似文献   

14.
Stem cells and their niche: a matter of fate   总被引:4,自引:0,他引:4  
Embryonic stem cells provide an in vitro model for developmental biologists to study cell fate decisions during ontogenesis, while somatic stem cells allow physiologists to understand tissue homeostasis in the adult. The behavior of stem cells is dependent on an intimate relationship with a supportive niche. This brief review highlights some of the most important recent trends in stem cell biology, focusing in particular on the supportive microenvironments for both embryonic and adult stem cells. Known intrinsic and extrinsic molecular players from the best-characterized stem cell types are summarized, illuminating a number of shared environmental cues among tissues originating from all three embryonic germ layers. Received 6 October 2005; received after revision 27 December 2005; accepted 17 January 2006  相似文献   

15.
Tenascin-C is an extracellular matrix glycoprotein, whose expression is highly restricted in normal adult tissues, but markedly up-regulated in a range of tumors, and therefore serves as a potential receptor for targeted anticancer drug or gene delivery. We describe here a liposomal carrier system in which the targeting ligand is sulfatide. Experiments with tenascin-C-expressing glioma cells demonstrated that binding of liposomes to the extracellular matrix relied essentially on the sulfatide-tenascin-C interaction. Following binding to the extracellular matrix, the sulfatide-containing liposomes were internalized via both caveolae/lipid raft- and clathrin-dependent pathways, which would ensure direct cytoplasmic release of the cargoes carried in the liposomes. Such natural lipid-guided intracellular delivery targeting at the extracellular matrix glycoproteins of tumor cells thus opens a new direction for development of more effective anticancer chemotherapeutics in future. K. Shao & Q. Hou: These authors contributed equally to this work. Received 22 September 2006; received after revision 5 December 2006; accepted 9 January 2007  相似文献   

16.
In fetal alcohol syndrome (FAS), cerebellar hypoplasia is associated with impaired insulin-stimulated survival signaling. This study characterizes ethanol dose-effects on cerebellar development, expression of genes required for insulin and insulin-like growth factor (IGF) signaling, and the upstream mechanisms and downstream consequences of impaired signaling in relation to acetylcholine (ACh) homeostasis. Pregnant Long Evans rats were fed isocaloric liquid diets containing 0%, 2%, 4.5%, 6.5%, or 9.25% ethanol from gestation day 6. Ethanol caused dose-dependent increases in severity of cerebellar hypoplasia, neuronal loss, proliferation of astrocytes and microglia, and DNA damage. Ethanol also reduced insulin, IGF-I, and IGF-II receptor binding, insulin and IGF-I receptor tyrosine kinase activities, ATP, membrane cholesterol, and choline acetyltransferase (ChAT) expression. In vitro studies linked membrane cholesterol depletion to impaired insulin receptor binding and insulin-stimulated ChAT. In conclusion, cerebellar hypoplasia in FAS is mediated by insulin/IGF resistance with attendant impairments in energy production and ACh homeostasis. Received 4 May 2006; received after revision 13 June 2006; accepted 20 June 2006  相似文献   

17.
In contrast to the considerable interest in the oncogene ornithine decarboxylase (ODC) and in the family of antizymes with regard to cell proliferation and tumorigenesis, the endogenous antizyme inhibitor (AZI) has been less well studied. AZI is highly homologous to the enzyme ODC but does not possess any decarboxylase activity. Elevated ODC activity is associated with most forms of human malignancies. Antizymes bind ODC, inhibit ODC activity and promote the ubiquitin-independent degradation of ODC. Consequently they are proposed as tumor suppressors. In particular, the most studied member of the antizyme family, antizyme 1, has been demonstrated to play a role in tumor suppression. AZI inactivates all members of the antizyme family, reactivates ODC and prevents the proteolytic degradation of ODC, which may suggest a role for AZI in tumor progression. Received 9 December 2005; received after revision 13 April 2006; accepted 1 June 2006  相似文献   

18.
Muscle satellite cells are believed to form a stable, self-renewing pool of stem cells in adult muscle where they function in tissue growth and repair. A regulatory disruption of growth and differentiation of these cells is assumed to result in tumor formation. Here we provide for the first time evidence that sonic hedgehog (Shh) regulates the cell fate of adult muscle satellite cells in mammals. Shh promotes cell division of satellite cells (and of the related model C2C12 cells) and prevents their differentiation into multinucleated myotubes. In addition, Shh inhibits caspase-3 activation and apoptosis induced by serum deprivation. These effects of Shh are reversed by simultaneous administration of cyclopamine, a specific inhibitor of the Shh pathway. Taken together, Shh acts as a proliferation and survival factor of satellite cells in the adult muscle. Our results support the hypothesis of the rhabdomyosarcoma origin from satellite cells and suggest a role for Shh in this process.Received 23 February 2005; received after revision 2 May 2005; accepted 9 June 2005  相似文献   

19.
Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities.  相似文献   

20.
Microfracture of subchondral bone results in intrinsic repair of cartilage defects. Stem or progenitor cells from bone marrow have been proposed to be involved in this regenerative process. Here, we demonstrate for the first time that mesenchymal stem (MS) cells can in fact be recovered from matrix material saturated with cells from bone marrow after microfracture. This also introduces a new technique for MS cell isolation during arthroscopic treatment. MS cells were phenotyped using specific cell surface antibodies. Differentiation of the MS cells into the adipogenic, chondrogenic and osteogenic lineage could be demonstrated by cultivation of MS cells as a monolayer, as micromass bodies or mesenchymal microspheres. This study demonstrates that MS cells can be attracted to a cartilage defect by guidance of a collagenous matrix after perforating subchondral bone. Protocols for application of MS cells in restoration of cartilage tissue include an initial invasive biopsy to obtain the MS cells and time-wasting in vitro proliferation and possibly differentiation of the cells before implantation. The new technique already includes attraction of MS cells to sites of cartilage defects and therefore may overcome the necessity of in vitro proliferation and differentiation of MS cells prior to transplantation. Received 3 November 2005; received after revision 15 December 2005; accepted 4 January 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号