首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
方程xp±y2p=z2与广义费尔马猜想   总被引:18,自引:4,他引:14  
设p为奇素数,证明了丢番图方程x4 -y4 =zp 与x2p±y2p=z2 均无正整数解;方程xp y2p=z2 仅有整数解 16 2 3 =32 ;方程x2p 2 kyp =z2 (k≥ 1)仅有整数解 12p 2 3 · 1p =32 ;同时还获得了方程x2 ±y4 =zp与x2 ±y4 =±z2p 的深刻结果,从而很大程度地支持广义Fermat猜想.  相似文献   

2.
关于丢番图方程x8+py2=4z4与x4+16py8=z2   总被引:2,自引:0,他引:2  
设p为奇数,证明了丢番图方程x^8+py^2=4z^4(x,y);1除开p=3时仅有正整数解(z,y,z)=(1,1,1)和p=7时仅有正整数解(x,y,z)=(1,3,2)之外,无其它正整数解。证明了方程x^4+16py^8=z^2,p≡3(mod 4),2/z,(x,y)=1,无正整数解。证明了P≡3(mod 4),方程x^4+16py^8=z^2,(x,y)=1当2/x时,除开p=3时仅有正整数解(x,y,z)-(1,1,7)外,无其它正整数解;当2|x时,有解x^2=2|pr^8-s^8|,y=rs,z=2(pr^8+s^8),2/rs,(r,s)=1。从而推广了文[4]的结果。由此可知(x,y,z)=(2,1,8)是方程x^4+48y^8=z^2的一个本原解,文[4]漏掉了此解,这说明文[4]引理2不是完全正确的,依据引理2证明的结论也是不可靠的。  相似文献   

3.
方程x~2 y~2=2z~2 (1)的正整解为 i 当其正整解相等时,有x=y=z=t,其中t∈N={1,2,3,…}; ii 当其正整数解互不相等且同为奇数时,有x=m~2 2mn-n~2,y=|-m~2 2mn N~2|,z=m~2 n~2,其中m,n∈N,m>n,(m,n)=1,m、n为一奇一偶。证明 i 显然。今证ii。由方程 (1) 知,它的正整数解x,y,z同为奇数或同为偶数,否则方程 (1) 是不成立的。特x,y为奇数,z为偶数,令x=2p 1,y=2q 1,z=2u,其中p,q,u∈N。将x,y之值代入 (1) 并将其两边同除以2,则其左边等于2(p~2 q~2 p q) 1为奇数,而右边等于4u~2为偶数,引出矛盾,方程 (1) 不成立。故方程 (1) 不存在x,y为奇数而z为偶数的解。同理可证方程 (1) 不存在x,y为偶数而z为奇数,或x,y一奇一偶而z为奇数,或x,y一奇一偶而z为偶数的正整数解。所以方程 (1) 的互不相等的正整数解x,y,z同为奇数或同为偶数。而要求方程 (1) 的同为偶数的解x,y,z,这可将方程 (1) 的同为奇数的解x,y,z  相似文献   

4.
当丢番图方程ax^2+by^2+cz^2+dxy+exz+fyz=gw^2有整数解x0,y0,z0,ω0(ω0≠0),(x0,y0,z0, ω0)=1时给出它满足(x,y,z,ω)=1,ω≠0的全部整数解的公式:{x=ηx-ξm/t,y=ηy0-ξn/t,z=ηz0-ξp/t,ω=ηω0/t其中η=am^2+bn^2+cp^2+dmn+emp+fnp,ξ=2(ax0m+by0n+cz0p)+d(nx0+my0)+e(px0+mz0)+f(py0+nz0),(m,n,p)=l并利用所得结果证明几个推论.  相似文献   

5.
方程p2x-pxDy+D2y=z2的非负整数解   总被引:1,自引:1,他引:0  
设D是大于1的奇数,p是不能整除D的素数.文章给出了方程p2x-pxDy D2y=z2有适合y>1的非负整数解(x,y,z)的充要条件.  相似文献   

6.
关于丢番图方程px~4-(p-1)y~2=z~4   总被引:3,自引:0,他引:3  
利用初等方法给出了丢番图方程px4-(p-1)y2=z4当p=qQ2+1,2|Q,q≡3(mod4),p、q为奇素数时的全部正整数解,从而拓展了王洪昌和王春光的px4-(p-1)y2=z4的结果.  相似文献   

7.
利用初等方法给出了丢番图方程x4+py4=z2(2z,(x,y)=1,p为奇素数)当2(×)Q,p=2Q2+1时的全部正整数解,从而改进了Mordell、佟瑞洲关于x4+py4=z2的结果.  相似文献   

8.
对任意的奇素数p,还没有找到给出丢番图方程px4-(p-1)y2=z4的全部正整数解的统一的初等方法,目前只解决了某类特殊的奇素数p的求解问题,例如王洪昌等人完全解决了p-1=Q2;或2Q2;或qQ2,2|Q,q≡3(mod4)为奇素数,Q为正整数的情形.认为对某类特殊的奇素数p求解丢番图方程px4-(p-1)y2=z4,目的是对任意的奇素数p,寻找给出丢番图方程px4-(p-1)y2=z4的全部正整数解的统一解法.当p=2q+1,q≡5(mod8),p,q为奇素数时,利用初等方法把方程px4-(p-1)y2=z4化为方程x2+my2=z2,从而给出方程px4-(p-1)y2=z4的全部正整数解;当q为任意正整数时,上述解法仍然适用,因此对任意给定的奇素数p,实际上已经给出了丢番图方程px4-(p-1)y2=z4的全部正整数解的统一解法.  相似文献   

9.
利用递归序列的方法及Pell方程解的性质证明了不定方程组x~2-26y~2=1与y2-Dz2=100的解的情况如下:ⅰ)当D=2p1…ps,1≤s≤4时,其中p1,…,ps(1≤s≤4)是互异的奇素数。除开D=2×7×743,方程组有非平凡解(x,y,z)=(±530 451,±104 030,±1 020)这一基本情况之外,仅有平凡解(x,y,z)=(±51,±10,0)。ⅱ)当D=2~n(n∈Z+)时,方程组只有平凡解(x,y,z)=(±51,±10,0)。  相似文献   

10.
利用初等方法给出了丢番图方程x4+py4=z2(2∣z,(x,y)=1,p为奇素数)当2 Q,p=2Q2+1时的全部正整数解,从而改进了Mordell、佟瑞洲关于x4+py4=z2的结果。  相似文献   

11.
关于不定方程px^4-(p-1)y^2=z^4   总被引:4,自引:1,他引:3  
利用初等方法给出了不定方程px^4-(p-1)y^2=z^4当p=2Q^2+1时的全部正整数解,从而拓展了王洪昌关于px^4-(p-1)y^2=z^4的结果.  相似文献   

12.
应用二次Diophantine方程和四次Diophantine方程的性质,证明了方程x2-1y2-1=(z2-1)2满足min(x,y,z)〉1的所有正整数解为(x,y,z)=(4a3-3a,a,2a)(a〉1)和(8a4+16a3+8a2-1,2a2+2a,2a+1)这两种形式,其中a为一个正整数。从而,得到了关于Diophantine方程一个的公开问题的肯定回答。  相似文献   

13.
证明了丢番图方程4x4-6x2y2 3y4=z2,(x,y)=1的全部正整数解为(x,y,z)=(x0/2,ab,(3a4 b4)/4), (Xn,2yn,2zn),认为仅有正整数解(x,y,z)=(1,1,1)是不妥的,它漏掉了(xn,2yn,2zn)及(x0/2,ab,(3a4 b4)/ 4);丢番图方程x4-6x2y2 12y4=z2,(x,y)=1的全部正整数解为(x,y,z)=(x0,ab,(3a4 b4)/2),(xn,yn, zn),认为仅有正整数解(xn,yn,zn),则漏掉了(x0,ab,(3a4 b4)/2)。  相似文献   

14.
利用初等方法给出了丢番图方程x4-py4=z2,(x,y)=1,2|y当p=Q2+1,p为奇素数时的全部正整数解,从而拓展了Mordell关于x4-py4=z2的结果。  相似文献   

15.
设p,q,r_i均为相异奇素数,且p≡1(mod8),q≡3(mod8),r_i≡5或7(mod8).证明了Pell方程组x~2-2y~2=1,y~2-Dz~2=4当D=2pqr_i时,除了D=34时仅有非平凡解z=±12外,其他情形仅有平凡解z=0。  相似文献   

16.
当k≥2,2kn+1=qh,q≡-1(mod2k),丢番图方程4/n=x-1十y-1+z-1有正整数解;当方程中n换以素数P,则P存疑的条件是Legendre符号有(P/3)=(P/5)=(P/7)=(P/11)=(P/13)=(P/17)=1.  相似文献   

17.
设p为奇素数.利用同余性质及Fermat的无穷递降法,证明了:D=p3,p≡3,7(mod 16);或D=-p3,p≡9,13(mod 16);或D=2p3,p≡3,5(mod 8);或D=4p3,p≡3,7(mod 16)时,方程x4+Dy4=z2,gcd(x,y)=1均无正整数解.同时给出D=3时方程的全部正整数解.  相似文献   

18.
设 $n$ 为任意正整数. 著名 Erd\H{o}s-Straus 猜想是指当 $n\ge 2$ 时, Diophantine 方程 $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 总有正整数解 $(x,y,z)$. 虽然有许多作者研究这个猜想, 但是至今它还未被解决. 设 $p\ge 5$ 为任意素数. 最近, Lazar 证明 Diophantine 方程 $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 在区域 $xy<\sqrt{z/2}$ 内没有 $x$ 与 $y$ 互素的正整数解 $(x,y,z)$. 同时, Lazar 提出问题: 在上述方程中以 $5/p$ 替换 $4/p$, 是否有类似结果? 这也是 Sierpinski 提出的一个猜想. 在本文中, 我们证明 Diophantine 方程 $\frac{a}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 没有满足\ $x, y$ 互素且\ $xy<\sqrt{z/2}$ 的正整数解 $(x,y,z)$, 其中 $a$ 为满足\ $a<7\le p$ 的正整数. 这回答了上述 Lazar 问题, 并推广了 Lazar 的结果. 我们的证明方法和工具主要是利用有理数\ $\frac{a}{p}$ 的连分数表示.  相似文献   

19.
一类二阶迭代泛函微分方程的解析解   总被引:1,自引:0,他引:1  
在复域C内研究了一类含有未知函数迭代的二阶微分方程λ2x″(z)+λ1x′(z)+λ0x(z)=f(∑mj=0cjxj(z))+G(z)的解析解的存在性。通过Schrder变换,即x(z)=y(αy-1(z)),把这类方程转化为一种不含未知函数迭代的泛函微分方程λ2[α2y″(αz)y′(z)-αy′(αz)y″(z)]+λ1αy′(αz)(y′(z))2+λ0y(αz)(y′(z))3=(y′(z))3[f(∑mj=0cjy(αjz))+G(y(z))],并给出了它的局部可逆解析解。讨论了双曲型情形0<|α|<1和共振的情形,还在Brjuno条件下讨论了在共振点附近的情形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号