首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考察了碳纳米管与传统氧化物作为载体负载的钴基催化剂用于费-托合成反应的性能.采用等体积浸渍法制备了钴基催化剂,并对催化剂进行了TPR、TEM、H2-化学吸附等表征分析.结果表明,Co/SiO2和Co/CNTs催化剂具有较低的还原温度且Co/SiO2催化剂还原峰较狭窄.TEM的结果显示Co/γ-Al2O3催化剂和Co/CNTs催化剂中的钴颗粒粒径分布范围较宽,而Co/SiO2催化剂的钴颗粒粒径分布较为均匀,这是导致其还原峰温范围不同的原因之一.费-托合成反应结果显示Co/CNTs催化剂和Co/γ-Al2O3催化剂具有比Co/SiO2催化剂更高的一氧化碳转化率,而Co/γ-Al2O3和Co/SiO2催化剂具有比Co/CNTs催化剂更高的C5+选择性和较高的α值.  相似文献   

2.
用分步浸渍-焙烧法制备了不同含量磷酸盐稳定的钨锆复合氧化物载铂催化剂(Pt/phosphated WO3/ZrO_2)。采用NH3程序升温脱附(NH3-TPD)、X线衍射(XRD)、N2物理吸附-脱附、H2程序升温还原(H2-TPR)和H2脉冲吸附等技术对催化剂进行了表征。用固定床反应器考察了催化剂催化甘油加氢制1,3丙二醇的反应性能。结果表明,随着PO_4~(3-)含量增加,Pt/phosphate WO3/ZrO_2催化剂比表面积呈先增大后减小的趋势,PO_4~(3-)质量分数0.8%的Pt/0.8phosphated WO3/ZrO_2催化剂比表面积达到最大值108 m2/g。适量引入PO_4~(3-)可增大催化剂总酸量,增强催化剂金属还原性,提高了催化剂H2吸附量,Pt/0.8phosphated WO3/ZrO_2催化剂H2吸附量达到最大值110.7μmol/g。Pt/0.8phosphated WO3/ZrO_2催化剂水热处理和反应前后比表面积基本没有变化,反应前后催化剂H2吸附量基本不变,Pt/phosphate WO3/ZrO_2催化甘油加氢稳定性较Pt/WO3/ZrO_2催化剂显著提高。  相似文献   

3.
采取浸渍法制备环境友好催化剂H3PW6Mo6O40/TiO2-WO3,并对催化剂进行IR和XRD表征。以H3PW6Mo6O40/TiO2-WO3为催化剂,由苯甲醛和乙二醇反应合成了苯甲醛乙二醇缩醛,探讨该催化剂对缩醛反应的催化活性,较系统地考察了醛醇物质的量比、催化剂用量、带水剂用量以及反应时间诸因素对产品收率的影响。实验表明,H3PW6Mo6O40/TiO2-WO3是合成苯甲醛乙二醇缩醛的良好催化剂,确定的适宜工艺条件为:n(苯甲醛)∶n(乙二醇)=1∶1.6,催化剂用量为反应物料总质量的0.8%,带水剂环己烷的用量为6mL,反应时间75min.在此反应条件下,苯甲醛乙二醇缩醛的收率可达79.4%.  相似文献   

4.
用铜做掺杂元素,采用浸渍法以活性炭为载体制备了贵金属载量为20%的Pd-Cu/C系列直接甲醇燃料电池阴极催化剂,比较了4种不同Cu含量催化剂的电催化性能。采用ICP和X射线衍射分析了催化剂中金属元素的比例以及Cu掺杂对Pd/C催化剂晶体结构的影响。结果表明:催化剂中Pd与Cu的物质的量之比与预设值相近,Pd和Cu基本被全部还原;Pd-Cu/C催化剂为面心立方结构,元素铜的加入使催化剂的Pd-Pd间距缩小,从而HO2 ads和OO键能更好地吸附在催化剂金属表面;当采用NaBH4为还原剂,Pd与Cu物质的量比为3∶1时,催化剂(Pd3Cu/C)的平均粒径为3.4 nm,催化剂的催化性能最好,电化学活性表面积EAS达到38.9m2/gPd,电化学性能较Pd/C催化剂有很大提高,接近Pt/C商用催化剂。  相似文献   

5.
二氧化钛负载磷钨钼杂多酸催化合成环己酮乙二醇缩酮   总被引:1,自引:0,他引:1  
采用浸渍法制备了二氧化钛负载磷钨钼杂多酸催化剂H3PW6Mo6O40/TiO2, 该催化剂的适宜制备条件为: 原料TiO2和H3PW6Mo6O40的质量均为1.0 g,水的用量30 mL,浸渍时间12 h,活化温度150 ºC。以H3PW6Mo6O40/TiO2为催化剂,对以环己酮与乙二醇为原料合成环己酮乙二醇缩酮的反应条件进行了研究,较系统地研究了酮醇物质的量比、催化剂用量、反应时间对收率的影响。实验结果表明,在n(环己酮)∶n(乙二醇)=1.0∶1.5、催化剂用量占反应物料总质量的1.0%、反应时间0.75 h的条件下,环己酮乙二醇缩酮的收率为87.7%。  相似文献   

6.
γ-Al2O3负载的Pt,Pd催化剂上邻二甲苯的深度催化氧化   总被引:1,自引:0,他引:1  
采用浸渍法制备了不同负载量的Pt/γ-Al2O3,Pd/γ-Al2O3及Pt-Pd/γ-Al2O3双金属催化剂并用于邻二甲苯的深度催化氧化.研究发现,在上述单金属催化剂中,Pd/γ-Al2O3的催化活性明显优于Pt/γ-Al2O3;将一定量的Pt添加到Pd/γ-Al2O3中形成Pt-Pd/γ-Al2O3双金属催化体系时,目标污染物的转化率和二氧化碳的产率较单金属催化剂都有显著增加,表明贵金属Pt的添加对Pd/γ-Al2O3的活性有促进作用.同时发现,Pt-Pd/γ-Al2O3具有良好的稳定性,是一种很好的深度催化氧化苯系污染物的催化剂.  相似文献   

7.
采用把ZrO2附载在AL2O3表面较共沉淀能制得的SO4^2-/ZrO2-Al2O3催化剂具有更好的催化活性,经催化合成DOP实验,酯化率在99%以上,选择性为96-98%,SEM、XRD及IR分析表明,SO4^2-/ZrO2-Al2O3具有固体超强酸的光谱特征,呈一定晶态的催化剂较无定形催化剂催化活性更好。  相似文献   

8.
合成了一种复合催化剂H3PW12O40/ZrO2,以环己酮和1,2-丙二醇为原料合成环己酮1,2-丙二醇缩酮为探针反应,对合成该催化剂的焙烧温度、焙烧时间及负载量进行了探究。将优化条件下制得的H3PW12O40/ZrO2为催化剂,以环己酮和乙二醇为原料合成环己酮乙二醇缩酮。探讨H3PW12O40/ZrO2对缩酮反应的催化活性,较系统地研究了酮醇物质的量比、催化剂用量、反应时间等因素对产物收率的影响。实验表明:H3PW12O40/ZrO2是合成环己酮乙二醇缩酮的良好催化剂,固定环己酮用量为0.15 mol,在n(环己酮):n(乙二醇)=1:1.6,催化剂用量为0.25 g,带水剂环己烷为12 mL,反应时间90 min的适宜条件下,环己酮乙二醇缩酮的收率可达72.2%。  相似文献   

9.
《河南科学》2017,(11):1749-1754
以γ-Al_2O_3颗粒和蜂窝陶瓷为载体,采用硝酸盐浸渍法制备了负载Fe_2O_3的两种催化剂,Fe_2O_3/γ-Al_2O_3催化剂和Fe_2O_3/蜂窝陶瓷催化剂.分别测试了蜂窝陶瓷、Fe_2O_3/蜂窝陶瓷催化剂和γ-Al_2O_3、Fe_2O_3/γ-Al_2O_3催化剂的比表面积;以丙烯酸废水中的丙烯酸作为目标污染物,分别对比了单独臭氧氧化、Fe_2O_3/γ-Al_2O_3催化剂和Fe_2O_3/蜂窝陶瓷催化对丙烯酸的降解效果.结果表明,Fe_2O_3/蜂窝陶瓷和Fe_2O_3/γ-Al_2O_3催化剂对丙烯酸的COD的去除率分别为93.4%和83.1%,比单独臭氧氧化时的COD去除率69.9%有大幅度的提高;Fe_2O_3/蜂窝陶瓷和Fe_2O_3/γ-Al_2O_3催化剂对丙烯酸的TOC的去除率分别为82.7%和75.2%,与单独臭氧氧化时TOC去除率相比,分别提高了31%和24%.  相似文献   

10.
纳米Fe2O3的制备及其光催化降解造纸废水   总被引:2,自引:0,他引:2  
利用固相法、回流均匀沉淀法和超声均匀沉淀法等3种方法,制备了多种可见光响应半导体催化剂氧化铁.相同试验条件下,考察了不同制备方法和制备条件对催化剂活性的影响,并用活性最佳的氧化铁对草浆造纸废水进行了光催化降解研究.试验结果表明:微波干燥和高温煅烧均能增强Fe2O3的光活性,且均匀沉淀法较其他两种方法制备的催化剂光活性好;催化剂TEM和RXD检测表明催化剂颗粒平均粒径均小于50 nm;废水pH=3.0,催化剂质量浓度1.0 g/L,H2O2体积分数5‰,紫外光照3 h后,COD去除率达93.1%,出水ρ(COD)为72 g/L,达到国家最新颁布的造纸废水排放标准,且催化剂多次重复使用和废水水样放大对催化剂活性和处理试验效果影响不大.  相似文献   

11.
合成甲醇铜基催化剂CuO/ZnO/Al2O3进行了性能研究,以及在其基础上添加少量的Mn之后对催化剂的活性和热稳定性的影响.采用共沉淀法制备了CuO/ZnO/Al2O3和CuO/ZnO/Al2O3/MnO2催化剂,并通过固定床反应器测试了催化剂的初活性及耐热后的活性,同时利用XRD、TPR实验手段对催化剂的结构进行了考察.实验结果表明,在铜基催化剂CuO/ZnO/Al2O3中添加少量的Mn之后,催化剂的活性和热稳定性(即抗热性能)有所提高,经耐热后催化剂的活性和热稳定性得到明显提高.  相似文献   

12.
POMs/TiO2复合催化剂光催化降解染料废水的研究   总被引:5,自引:0,他引:5  
采用溶胶-凝胶方法表面修饰TiO2制备了几种POMs/TiO2复合光催化剂,考察了催化剂在紫外光照射下对模拟染料废水(茜素红溶液)的光催化降解行为.结果表明:POMs/TiO2复合催化剂较纯TiO2光催化降解茜素红活性明显提高,其中复合催化剂Cr3OSiW12/TiO2光催化降解模拟染料废水(茜素红溶液)效果最佳.反应最佳条件:催化剂为Cr3OSiW12/TiO2,多酸质量分数为0.5%,催化剂用量为15 mg,茜素红溶液浓度为0.1mmol/L.茜素红降解质量分数可达74.6%.  相似文献   

13.
采用原位水热法制备了LaCoO_3/MCF、LaCoO_3/SBA-15催化剂,分别采用XRD、氮气物理吸附-脱附、TEM对催化剂进行了表征,并在固定床反应器中对催化剂的CO氧化反应活性进行了测试,考察了不同LaCoO_3负载量和不同载体负载的催化剂的CO氧化性能.结果表明:原位水热合成法制备的LaCoO_3/MCF催化剂具有较高的比表面积(281.1~427.6 m2·g-1)和三维介孔泡沫状孔道结构,LaCoO_3纳米颗粒均匀地分散在催化剂中.LaCoO_3的含量显著影响催化剂的CO氧化反应活性,负载量为30%的催化剂(30LaCoO_3/MCF)的反应活性最高,CO在387℃氧化完全.与SBA-15负载的催化剂相比,由于MCF的三维互通结构,催化剂30LaCoO_3/MCF的催化性能明显提高.  相似文献   

14.
甲酸分解制氢是解决能源问题的有效途径,与Pd催化剂相比,Au催化剂不易失活,具有较好的稳定性.使用次亚磷酸钠原位还原制备了Au-P/SiO_2催化剂,并利用X射线衍射、透射电子显微镜和X射线光电子能谱等表征手段探讨其结构,并以甲酸分解为目标反应研究其催化性能.结果表明,该方法制备的催化剂中Au粒子(粒径3nm左右)均匀分散在SiO_2表面,且P掺杂进入Au的晶格形成Au-P复合物,改变了Au的电子结构.同时反应过程中产生的PⅢ被Au3+氧化生成磷酸金,提供酸性中心,使Au-P/SiO_2催化剂表现出较Au/SiO_2催化剂更加优越的催化性能.在363K,4mol/L的甲酸溶液中,Au-P/SiO_2催化剂催化甲酸分解的转化率可达51%,是未掺杂的Au/SiO_2催化剂的4倍.  相似文献   

15.
以钛酸四正丁酯为前驱体,以硫酸为抑制剂,采用溶胶-凝胶法制备了纯的TiO2/SO2-4和TiO2/PO3-4/SO2-4催化剂.通过使用电镜、红外以及氮气吸附脱附对其进行表征,结果表明催化剂为具有孔结构的球形纳米催化剂,微粒分布较分散.并应用于乙腈的加成反应,以乙腈和甲醇为原料在低温条件下合成了原乙酸三甲酯,并讨论了反应工艺,得到最佳反应条件.  相似文献   

16.
在透氧膜反应器内对比分析了不加催化剂和添加 1 g 9% Ni/γ -Al2O3 催化剂的甲烷重整反应实验. 结果表明, 不加催化剂时甲烷相对较惰性; 而在催化剂的作用下, 甲烷重整活性得到了较大提高, 但是催化剂易积碳. 推测甲烷重整反应路径如下: 甲烷在催化剂活性组分上发生裂解, 产生氢和碳; 生成的氢与膜表面的氧反应生成 H2O,从而使得膜表面侧氧分压下降, 透氧量增大. 通过设计不同 Ni 含量 NiO/MgO 催化剂下的甲烷裂解和甲烷重整反应实验, 验证了以上的反应机理模型.  相似文献   

17.
本文用自制的0.41%(质量)Pd/γ—Al_2O_3催化剂,在浆态4.0MPa氢压下丁炔二醇一步加氢制取1,4—丁二醇(以后简称丁二醇),其丁炔二醇转化率为100%,丁二醇的选择性可达94%,在乙醇溶液中的最佳反应条件为搅拌转速25Hz,催化剂粒度0.1~0.45mm,催化剂载量3.57kg/m~3,丁炔二醇初浓度1.0kmol/m~3,反应温度323K,实验条件内催化剂较稳定。  相似文献   

18.
采用微型固定床流动反应装置研究了在La2 O3 NiO/γ Al2 O3 催化剂上添加CaO对甲烷部分氧化制合成气的影响 .结果表明 ,添加CaO后 ,催化剂活性明显提高 ,引发温度降低 ,CH4的转化率和CO的选择性升高 ,1 ?O 2 %La 1 2 %Ni/γ Al2 O3 是较适宜的催化剂在中低温区 ,随反应温度升高 ,CH4的转化率和CO的选择性升高 ,催化反应的适宜温度为 6 0 0℃~70 0℃ .  相似文献   

19.
采用微型固定床流动反应装置研究了在CaO-La2O3-NiO/γ-Al2O3催化剂上添加CaO对甲烷部分氧化制合成气的影响,结果表明,添加CaO后,催化剂活性明显提高,引发温度降低,CH4的转化率和CO的选择性升高,1%CaO-2%La-12%Ni/γ-Al2O3是较适宜的催化剂在中低温区,随反应温度升高,CH4的转化率和CO的选择性升高,催化反应的适宜温度为600℃-700℃。  相似文献   

20.
以磷钨酸掺杂聚苯胺H3PW12O40/Pan为催化剂,对以丁醛和1,2-丙二醇为原料合成丁醛1,2-丙二醇缩醛的反应条件进行了研究.实验表明:磷钨酸掺杂聚苯胺催化剂H3PW12O40/Pan是合成丁醛1,2-丙二醇缩醛的良好催化剂,较系统地研究了醛醇摩尔比、催化剂用量、反应时间诸因素对收率的影响.最佳反应条件为:n(丁醛):n(1,2-丙二醇) =1:1.2,催化剂用量为反应物料总质量的0.5%,环己烷为带水剂,反应时间50 min.上述条件下,丁醛1,2-丙二醇缩醛的收率可达87.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号