首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
对于钢液铝脱氧精炼过程产生的Al_2O_3夹杂物严重影响钢的性能,而在钢液凝固过程中MnS夹杂物容易包裹着Al_2O_3夹杂物形成复合夹杂物,这种复合夹杂物改善钢材的性能有重要意义。通过场发射扫描电镜和能谱对国内某钢厂连铸坯中夹杂物形貌以及组成进行观察与分析,发现大量MnS包裹Al_2O_3复合夹杂物。同时通过理论热力学阐述MnS包裹Al_2O_3复合夹杂物的析出机理,计算得出:Al_2O_3夹杂物在钢液中形成,Mn S夹杂物在钢液凝固过程中形成,由于Al_2O_3夹杂物先析出,Mn S夹杂物可以在先析出的Al_2O_3夹杂物进行形核与长大,为钢中MnS包裹Al_2O_3复合夹杂物生成提供了理论依据。  相似文献   

2.
利用热力学软件FactSage 7.0计算1873K下四元渣系CaO-SiO_2-Al_2O_3-MgO与60Si2Mn弹簧钢平衡时的等氧线,通过渣-钢高温平衡试验,测定了不同精炼渣方案下钢中溶解氧和全氧含量,并对钢中非金属夹杂物的形貌、数量和尺寸分布进行表征。结果表明,1873K温度下,w(MgO)=6%且w(CaO)/w(Al_2O_3)=1时,钢液中溶解[O]及T[O]含量随着渣中w(SiO_2)的增大而增加,而当w(SiO_2)=30%时,随着w(CaO)/w(Al_2O_3)的增加,钢液中溶解[O]及T[O]含量分别呈降低和升高的趋势,这与钢液中SiO_2的活度有关;不同精炼渣方案得到的钢中,尺寸小于10μm的夹杂物所占比例超过87%,尺寸小于4μm的夹杂物所占比例超过50%,且单位面积夹杂物的数量与钢中T[O]含量的变化趋势一致。与试验结果对比可知,利用热力学软件FactSage 7.0计算钢中溶解氧含量是可行的。  相似文献   

3.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2 O3、MgO.Al2 O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO--Al2O3系夹杂物→CaO--MgO--Al2O3系夹杂物"顺序发生转变,其中MgO--Al2 O3系夹杂物向CaO--MgO--Al2 O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢;降低T[O]含量有利于生成较低熔点的CaO--MgO--Al2O3系夹杂物.  相似文献   

4.
为了控制B82帘线钢中的夹杂物形态,不仅要减少氧化物夹杂的数量,而且要控制其在CaO-Al_2O_3-SiO_2系塑性变形区域内,即成分位于钙斜长石(CaO·Al_2O_3·SiO_2)、假硅灰石(CaO·SiO_2)以及相邻低熔点区域;通过钢中三元以上塑性夹杂物热力学计算并经理论分析得出,要使多元夹杂物同时转变为熔点低于1350℃、尺寸细小、变形能力较强的钙铝硅酸盐类夹杂物,必须满足钢中溶解氧质量分数控制在(40~100)×10~(-4)%,钢液中Al质量分数控制在0.1%~4×10~(-4)%,Ca活度在(0.05~10)×10~(-6)%,不允许有纯Al_2O_3和氮化物夹杂.  相似文献   

5.
为实现钢液的洁净化,在安泰集团90tBOF-90tLF-150×150mm~2CC生产线上,调整LF精炼中软吹氩流量,并在不同精炼工序和结晶器中取样,用光学显微镜和扫描电镜(SEM-EDS)的分析结果,研究软吹氩流量对ML08Al钢液中夹杂物行为及钙处理对夹杂物的影响。研究结果表明:250~300L/min的软吹氩流量能有效地脱除钢液中的夹杂物,对10μm的夹杂物脱除效果显著;在软吹前后,夹杂物平均尺寸从2.34μm减小到1.18μm,夹杂物面积分数从3 467.7μm~2/mm~2降低到413μm~2/mm~2.当软吹流量达到340L/min时,夹杂物的面积分数急剧上升,脱除效果变差。钙处理把铝脱氧产生的高熔点脆性Al_2O_3和MgO·Al_2O_3夹杂物变性为低熔点的钙铝酸盐类夹杂物;部分夹杂物变性为芯部是Al_2O_3外部包裹CaS的小尺寸球状复合夹杂物。  相似文献   

6.
系统研究了Ti-IF钢冶炼过程和铸坯中含Ti夹杂物的组成、分布与微观形貌,揭示了含Ti夹杂物的衍变规律.热力学分析和实验结果表明:在IF钢冶炼过程中无TiN生成,含Ti夹杂物的存在形式是以TiO2为主的钛氧化物结合其他氧化物的复合夹杂:而在连铸凝固过程中,由于钢液温度降低和元素的偏析作用,TiN夹杂以异质形核的方式生成.IF钢铸坯中非金属夹杂物主要是大尺寸Al2O3颗粒和存在中间过渡层的TiN—Al2TiO5-Al2O3复合夹杂物,其形核长大过程是[Al]、[Ti]和[O]先在细小的Al2O3颗粒上反应生成一层Al2TiO5,然后TiN在Al2TiO5表面形核长大.根据连铸过程和铸坯中含钛夹杂物的研究得出,Ti-IF钢铸坯中TiN夹杂难以去除,但是可以使其变性以实现对钢中含钛夹杂物的控制.  相似文献   

7.
钢液铝脱氧过程产生的高熔点非金属夹杂物Al_2O_3对钢材性能危害较大,因此对其数量和尺寸控制变得十分重要。本文通过设计高温激光共聚焦显微镜实验对早期形成的Al_2O_3夹杂物进行研究,通过场发射扫描电镜FESEM和能谱EDS对高温激光共聚焦显微镜制备的试样中的夹杂物进行观察与分析,发现大量纳米尺寸Al_2O_3夹杂物,尺寸在100 nm以下。同时,研究了冷却速率对早期形成Al_2O_3夹杂物的影响,结果表明:冷却速率越大,夹杂物的数量越少,尺寸越细小。  相似文献   

8.
为提高武钢薄板坯连铸连轧产线集装箱钢水洁净度,通过工业试验考察了LF精炼过程炉渣成分、软吹氩以及钙处理工艺对钢中T[O]和夹杂物的影响.试验结果表明,适当提高(CaO+MgO)/SiO2有利于降低钢中T[O],但同时要考虑(CaO+MgO)/Al2O3的比值,适当增加钙处理前后软吹氩时间可明显提高钢水洁净度;将炉渣中(CaO+MgO)/SiO2和(CaO+MgO)/Al2 O3控制在合适范围不仅有利于提高钢水洁净度,而且有利于钢中低熔点CaO--MgO--Al2 O3系夹杂物的生成.根据相关热力学数据给出了实际生产钢中生成不同液态铝酸钙时[Ca]--[Al]平衡热力学计算模型.  相似文献   

9.
为了充分了解帘线钢中夹杂物,对钢液凝固过程析出夹杂物进行了分析. 结果发现:Al2O3夹杂物在凝固过程中先析出,且Al2O3夹杂物长大的限制性环节为[Al]在钢液中的扩散;当凝固分数为0.44时SiO2开始析出,且SiO2长大的限制性环节为[O]在钢液中的扩散;析出夹杂物的半径随着冷却强度的增大而减小;当冷却速度为100 K·min-1时,凝固末期析出Al2O3夹杂物的半径为2.5 μm,析出复合Al2O3-SiO2夹杂物的半径为4.7 μm;随着凝固的进行,夹杂物中SiO2含量增加,Al2O3含量下降.  相似文献   

10.
通过Al-Ca复合合金钢水脱氧的平衡热力学计算,确定了钢液的氧的质量分数在3×10-6~1×10-4条件下,1600℃时的Al-Ca复合合金脱氧产物的稳定区域图.以此为基础,假定钙的收得率为100%,预测了钢液在Al-Ca复合合金Ca/Al质量比为5,加入量为M kg;Al-Ca复合合金Ca/Al质量比为0.2,加入量为M kg;Al-Ca复合合金Ca/Al质量比为0.2,加入量为0.2M kg三种不同脱氧制度下夹杂物的演变历程.结果表明,在Ca/Al=5,复合合金加入量使初始钢液中的[Ca]为0.01%,[Al]为0.002%时,夹杂物在钢液精炼过程中的演变历程为:12CaO·7Al2O3(l)/CaO·Al2O3(l)→CaO(s)→12CaO·7Al2O3(l)/CaO·Al2O3(l)→CaO(s)→12CaO·7Al2O3(l)/CaO·Al2O3(l),并确定了固态和液态脱氧产物在脱氧过程中交替形成为最理想的Al-Ca复合合金脱氧制度,可为钢铁企业脱氧剂的选择和应用提供参考和借鉴.  相似文献   

11.
38CrMoAl高铝钢钢水可浇性控制   总被引:1,自引:0,他引:1  
38CrMoAl高铝钢由于Al含量较高([Al]=0.7%~1.1%,质量分数),在连铸过程中容易导致水口的堵塞,因此需要对钢中Al2O3夹杂物进行形态控制,保证钢水的可浇性.热力学计算和实验研究结果显示:钢中高含量的Al对渣中即使少量的SiO2都具有较强的还原性;不采用传统的精炼喂钙线工艺,而进行转炉出钢过程渣洗操作,能将高熔点的Al2O3转变为低熔点的球状钙铝酸盐夹杂.同时,采用CaO--Al2O3基中间包覆盖剂,以避免钢渣反应导致钢中夹杂物含量增加.工业性试验结果表明,钢水洁净度较高,可浇性好,连续浇注5炉后,水口内壁基本无结瘤现象.  相似文献   

12.
对国内一钢厂EAF→LF→VD→CC工艺生产的高品质GCr15轴承钢进行系统取样,针对DS类非金属夹杂物随机性强的特点,利用能够进行大面积试样检测的ASPEX自动扫描电镜分析统计钢中非金属夹杂物的成分、尺寸、数量等信息。研究发现:GCr15轴承钢冶炼过程中非金属夹杂物主要为MgO- Al2 O3- CaO复合夹杂物和MnS,同时有少量的SiO2- Al2 O3和MgO-Al2 O3复合夹杂物;夹杂物尺寸主要集中在3~8μm,并有少量DS类夹杂物出现且尺寸范围波动很大,最大可以达70μm以上,形貌为圆形或近似圆形;VD有较强的去除夹杂物功能,经过VD真空精炼,夹杂物中CaO含量有增加趋势;吊包至铸坯过程,夹杂物成分向Al2 O3含量增多的区域移动,最终轴承钢铸坯中夹杂物成分位于高Al2 O3含量(≥80%),少量MgO (<20%)和低CaO(<5%)的区域;DS夹杂物的生成和去除具有较强的随机性。  相似文献   

13.
从A12O3活度和夹杂物成分两方面来研究精炼渣对夹杂物的影响.采用Factsage软件对CaO—A1203-SiO3-MgO(8%)-CaF2(8%)炉渣中A1203,活度进行了计算,并研究了碱度和(MgO)含量对A12O3度的影响.当炉渣碱度从1.0增加到2.0时,炉渣中A1203活度随着炉渣碱度的增加而降低;当炉渣碱度从2.0增加到3.8时,A1203活度变化幅度很小;(MgO)质量分数分别为5%和8%的渣,A1203活度差距较小;在碱度高的炉渣中[A1]。容易被从炉渣还原到钢水中.在使用高碱度精炼渣的盘条中发现许多含有MgO的硬性夹杂物,并对此进行了分析,最后得出最适宜的炉渣碱度为2.5—3.0.  相似文献   

14.
根据热力学计算,结合生产过程实际,研究了Si脱氧条件下304奥氏体不锈钢在LF精炼、连铸过程夹杂物的变化规律.结果表明,钢水中主要形成CaO-Al2O3-SiO2类复合夹杂物,钢水中Al含量随Si含量的降低逐渐减小.当精炼渣碱度R=1.5时,随精炼、连铸过程的进行,复合夹杂物中Al2O3含量逐渐减少,CaO,SiO2含量逐渐增加.终点铸坯夹杂物成分为30%~35%CaO,20%~27%Al2O3,25%~30%SiO2,其他成分含量较少.终点铸坯夹杂物略显碱性,变形能力稍弱.  相似文献   

15.
The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking  process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18wt%Cr?8wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-point-phase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy (CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.  相似文献   

16.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

17.
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差. 利用FactSage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化. 结果表明,CaO/Al2 O3 质量比在1. 5左右添加质量分数为3% CaF2 可以有效降低渣的熔化温度,渣的熔化温度随着CaF2 含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大. 在SiO2 质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2 O3 质量比的增加而降低,在SiO2 的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2 含量高的区域随着Al2 O3/SiO2 质量比的增加而升高,在SiO2 含量低的区域随着CaO/SiO2 质量比的增加而增加. 根据热力学分析结果得出合理的渣系范围:CaO 50% ~60%, Al2 O3 20% ~35%, SiO2 5% ~10%, MgO 5% ~8%, CaF2 0~5%. 优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降.  相似文献   

18.
帘线钢CaO-SiO2-Al2O3-MnO系夹杂物的成分控制   总被引:1,自引:0,他引:1  
利用热力学计算软件FactSage计算出CaO-SiO2-Al2O3-MnO四元系各成分的活度数据,并通过热力学计算分析了帘线钢获得良好变形能力的CaO-SiO2-Al2O3-MnO四元系夹杂物生成所需的条件,验证了本文所介绍方法的可行性. 指出为得到塑性区的CaO-SiO2-Al2O3-MnO系夹杂物,要控制CaO-SiO2-Al2O3-MnO四元系夹杂物中Al2O3为20%,LF精炼炉中钢液的酸溶铝[Al]s含量应小于3×10-6,溶解氧含量应在2.0×10-5~6.0×10-5之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号