首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent of linkage disequilibrium in Arabidopsis thaliana.   总被引:20,自引:0,他引:20  
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.  相似文献   

2.
The genetics of asthma and atopy have been difficult to determine because these diseases are genetically heterogeneous and modified by environment. The pedigrees in our study (n=86) originate in eastern central Finland (Kainuu province). According to census records, this region had only 200 households (2,000 inhabitants) in the mid sixteenth to mid seventeenth centuries. The current population of 100,000 represents the expansion of these founders within the past 400 years. Because this population is relatively homogeneous, we hypothesized that the molecular genetic mechanisms underlying asthma might also have reduced heterogeneity and therefore be easier to dissect than in mixed populations. A recent twin family study supported a strong genetic component for asthma in Finland. We carried out a genome-wide scan for susceptibility loci in asthma in the Kainuu subpopulation. We identified two regions of suggestive linkage and studied them further with higher-density mapping. We obtained evidence for linkage in a 20-cM region of chromosome 7p14-p15 for three phenotypes: asthma, a high level of immunoglobulin E (IgE; atopy) and the combination of the phenotypes. The strongest linkage was seen for high serum IgE (non-parametric linkage (NPL) score 3.9, P=0.0001), exceeding the threshold for genome-wide significance based on simulations. We also observed linkage between this locus and asthma or atopy in two independent data sets.  相似文献   

3.
We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.  相似文献   

4.
The Human Genome Project and its spin-offs are making it increasingly feasible to determine the genetic basis of complex traits using genome-wide association studies. The statistical challenge of analyzing such studies stems from the severe multiple-comparison problem resulting from the analysis of thousands of SNPs. Our methodology for genome-wide family-based association studies, using single SNPs or haplotypes, can identify associations that achieve genome-wide significance. In relation to developing guidelines for our screening tools, we determined lower bounds for the estimated power to detect the gene underlying the disease-susceptibility locus, which hold regardless of the linkage disequilibrium structure present in the data. We also assessed the power of our approach in the presence of multiple disease-susceptibility loci. Our screening tools accommodate genomic control and use the concept of haplotype-tagging SNPs. Our methods use the entire sample and do not require separate screening and validation samples to establish genome-wide significance, as population-based designs do.  相似文献   

5.
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.  相似文献   

6.
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.  相似文献   

7.
Genome-wide association studies are set to become the method of choice for uncovering the genetic basis of human diseases. A central challenge in this area is the development of powerful multipoint methods that can detect causal variants that have not been directly genotyped. We propose a coherent analysis framework that treats the problem as one involving missing or uncertain genotypes. Central to our approach is a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping. Using real genome-wide association study data, we show that our approach (i) is accurate and well calibrated, (ii) provides detailed views of associated regions that facilitate follow-up studies and (iii) can be used to validate and correct data at genotyped markers. A notable future use of our method will be to boost power by combining data from genome-wide scans that use different SNP sets.  相似文献   

8.
Light has an important role in modulating seedling growth and flowering time. We show that allelic variation at the PHYTOCHROME C (PHYC) photoreceptor locus affects both traits in natural populations of A. thaliana. Two functionally distinct PHYC haplotype groups are distributed in a latitudinal cline dependent on FRIGIDA, a locus that together with FLOWERING LOCUS C explains a large portion of the variation in A. thaliana flowering time. In a genome-wide scan for association of 65 loci with latitude, there was an excess of significant P values, indicative of population structure. Nevertheless, PHYC was the most strongly associated locus across 163 strains, suggesting that PHYC alleles are under diversifying selection in A. thaliana. Our work, together with previous findings, suggests that photoreceptor genes are major agents of natural variation in plant flowering and growth response.  相似文献   

9.
Lin S  Chakravarti A  Cutler DJ 《Nature genetics》2004,36(11):1181-1188
Genome-wide disease-association mapping has been heralded as the study design of the next generation, but the lack of analytical methods to use genotype data fully is a large stumbling block. Here we describe an algorithm and statistical method that efficiently and exhaustively exploits haplotype information by subjecting alleles (a marker or contiguous sets of markers) from sliding windows of all sizes to transmission disequilibrium tests. By applying our method to simulated data and to Hirschsprung disease, we show that it can detect both common and rare disease variants of small effect. These results show that the theoretical benefits of genome-wide association studies are at last realizable.  相似文献   

10.
Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.  相似文献   

11.
The genome-wide distribution of linkage disequilibrium (LD) determines the strategy for selecting markers for association studies, but it varies between populations. We assayed LD in large samples (200 individuals) from each of 11 well-described population isolates and an outbred European-derived sample, using SNP markers spaced across chromosome 22. Most isolates show substantially higher levels of LD than the outbred sample and many fewer regions of very low LD (termed 'holes'). Young isolates known to have had relatively few founders show particularly extensive LD with very few holes; these populations offer substantial advantages for genome-wide association mapping.  相似文献   

12.
Genome-wide association studies (GWAS) are a standard approach for studying the genetics of natural variation. A major concern in GWAS is the need to account for the complicated dependence structure of the data, both between loci as well as between individuals. Mixed models have emerged as a general and flexible approach for correcting for population structure in GWAS. Here, we extend this linear mixed-model approach to carry out GWAS of correlated phenotypes, deriving a fully parameterized multi-trait mixed model (MTMM) that considers both the within-trait and between-trait variance components simultaneously for multiple traits. We apply this to data from a human cohort for correlated blood lipid traits from the Northern Finland Birth Cohort 1966 and show greatly increased power to detect pleiotropic loci that affect more than one blood lipid trait. We also apply this approach to an Arabidopsis thaliana data set for flowering measurements in two different locations, identifying loci whose effect depends on the environment.  相似文献   

13.
Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P< or =0.0004 for single word-reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait.  相似文献   

14.
15.
The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.  相似文献   

16.
Lam HM  Xu X  Liu X  Chen W  Yang G  Wong FL  Li MW  He W  Qin N  Wang B  Li J  Jian M  Wang J  Shao G  Wang J  Sun SS  Zhang G 《Nature genetics》2010,42(12):1053-1059
We report a large-scale analysis of the patterns of genome-wide genetic variation in soybeans. We re-sequenced a total of 17 wild and 14 cultivated soybean genomes to an average of approximately ×5 depth and >90% coverage using the Illumina Genome Analyzer II platform. We compared the patterns of genetic variation between wild and cultivated soybeans and identified higher allelic diversity in wild soybeans. We identified a high level of linkage disequilibrium in the soybean genome, suggesting that marker-assisted breeding of soybean will be less challenging than map-based cloning. We report linkage disequilibrium block location and distribution, and we identified a set of 205,614 tag SNPs that may be useful for QTL mapping and association studies. The data here provide a valuable resource for the analysis of wild soybeans and to facilitate future breeding and quantitative trait analysis.  相似文献   

17.
18.
In addition to the HLA locus, six genetic risk factors for primary biliary cirrhosis (PBC) have been identified in recent genome-wide association studies (GWAS). To identify additional loci, we carried out a GWAS using 1,840 cases from the UK PBC Consortium and 5,163 UK population controls as part of the Wellcome Trust Case Control Consortium 3 (WTCCC3). We followed up 28 loci in an additional UK cohort of 620 PBC cases and 2,514 population controls. We identified 12 new susceptibility loci (at a genome-wide significance level of P < 5 × 10??) and replicated all previously associated loci. We identified three further new loci in a meta-analysis of data from our study and previously published GWAS results. New candidate genes include STAT4, DENND1B, CD80, IL7R, CXCR5, TNFRSF1A, CLEC16A and NFKB1. This study has considerably expanded our knowledge of the genetic architecture of PBC.  相似文献   

19.
Recombination and linkage disequilibrium in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Linkage disequilibrium (LD) is a major aspect of the organization of genetic variation in natural populations. Here we describe the genome-wide pattern of LD in a sample of 19 Arabidopsis thaliana accessions using 341,602 non-singleton SNPs. LD decays within 10 kb on average, considerably faster than previously estimated. Tag SNP selection algorithms and 'hide-the-SNP' simulations suggest that genome-wide association mapping will require only 40%-50% of the observed SNPs, a reduction similar to estimates in a sample of African Americans. An Affymetrix genotyping array containing 250,000 SNPs has been designed based on these results; we demonstrate that it should have more than adequate coverage for genome-wide association mapping. The extent of LD is highly variable, and we find clear evidence of recombination hotspots, which seem to occur preferentially in intergenic regions. LD also reflects the action of selection, and it is more extensive between nonsynonymous polymorphisms than between synonymous polymorphisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号