首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在城市路况下,电池和超级电容复合电源电动汽车会对信号灯判断不准确而频繁起停,造成额外的能量消耗。基于智能交通系统中预知交通信号信息的应用场景,本文提出了一种分层能量管理方法。首先,根据交通信号信息,上层车速设计策略优化车速,得到车辆经济参考车速,避免车辆在信号灯区域频繁起停。其次,基于经济参考车速,设计了一种基于非线性模型预测控制的下层能量管理策略,合理分配电池及超级电容的功率输出,并有效跟踪经济参考车速,降低电池功率的变化率。最后,对所提出的车速设计和能量管理策略进行仿真分析,并搭建实验平台进行验证。研究结果表明:分层能量管理策略使等效燃油经济性提高了3.24%,降低了电池能耗,并且减少了车辆急加速或急减速情况,提高了驾驶舒适性。  相似文献   

2.
为了进一步挖掘功率分流混合动力汽车的节能潜力,提出了一种融合驾驶意图、车间运动特征及工况历程特征信息的车速预测方法。在此基础上,以燃油经济性最优为目标,建立了基于模型预测控制的整车能量管理优化模型,并采用动态规划算法在有限时域内进行求解,实现了各动力源转矩的实时最优分配。通过MATLAB/simulink软件平台仿真验证表明:在城市道路循环工况下,车速预测精度在不同预测时域都得到了进一步的提升。相比于参数优化后的规则策略,该整车能量管理策略在3种典型工况下,燃油消耗量分别降低了28.53%、23.40%和26.42%,从而验证了该车速预测方法和整车能量管理策略的有效性。  相似文献   

3.
为提升整车经济性和耐久性,提出了一种基于强化学习和路况信息的燃料电池汽车能量管理策略。首先,根据关键部件参数搭建了动力系统模型,并根据城市道路工况特征在VISSIM软件中搭建交通模型并提取了车辆行驶数据及路况数据。其次,将路况数据作为输入,利用长短期记忆神经网络对车速进行预测。最后,基于强化学习算法,将预测车速、加速度以及动力电池荷电状态作为输入,燃料电池系统功率作为输出进行能量管理策略的设计。仿真结果表明,所提策略的百公里氢耗量与动态规划策略相比仅相差1.27%,且燃料电池系统的平均功率波动降低了5.01%,因此可有效提升整车的经济性和耐久性。  相似文献   

4.
混合动力车辆的能量管理策略对提高燃油经济性十分重要.为了提高功率分流式混合动力车辆的燃油经济性以及能量管理策略的实时性,设计了基于显式随机模型预测控制的能量管理策略.首先利用马尔科夫链预测车速,通过简化控制模型,把非线性的能量管理问题转化为线性二次优化问题,建立了以预测域内能量消耗最小为目标的随机模型预测策略(SMPC);然后通过参数化求解得到显式随机模型预测控制策略,该策略既保持了随机模型预测控制方法的优势,又提高了计算速度;最后在多个工况下进行仿真,对提出的能量管理策略的有效性进行验证.仿真结果表明:与基于规则的控制策略相比燃油经济性最高可提高28.64%,同时该策略在仿真中的平均计算时间为3.1 ms,具有实时运算潜力.  相似文献   

5.
为进一步改善插电式混合动力汽车(plug-in hybrid electric vehicle, PHEV)的能量经济性,提出了一种考虑市区道路交通信息的经济车速规划方法及基于模型预测控制(model predictive control, MPC)的能量优化管理策略。以某款P2构型的PHEV为研究对象,基于市区路口信号灯配时状态信息,分别采用动态规划与高斯伪普法优化求解经济车速。根据规划出的经济车速,提出了基于MPC的优化能量管理策略,其利用Dijkstra算法求解最优转矩分配。结果表明:对比基于规则的分段三角函数法,2种经济车速规划算法分别可降低6.31%、7.03%的PHEV等效油耗。基于MPC的优化能量管理策略相比于基于规则的能量管理策略可进一步提升4.98%的能量经济性。  相似文献   

6.
针对电动汽车的混合式复合电源工作模式切换复杂、不利于不同工作模式的功率最优分配问题,提出基于模拟退火算法的复合电源能量管理优化方法。对混合式复合电源的工作模式进行分层讨论,建立能量管理系统的各部件损耗模型,基于不同层次设计能量管理策略。在分层能量管理策略的基础上,采用模拟退火算法降低系统的损耗。搭建混合式复合电源仿真模型和实验台进行仿真和实验。仿真和实验结果表明:在NYCC和EUDC路况下,混合式复合电源能量管理系统采用模拟退火算法优化比滞环逻辑控制的总损耗降低0.8%和1.1%。混合式复合电源能量管理系统采用模拟退火算法不仅能有效降低系统损耗,实现功率最优分配,而且能及时跟随功率需求,由超级电容提供或吸收峰值功率,保证电池安全。  相似文献   

7.
针对一种新型的车用增程式混合动力系统,研究了不同的行驶路况对基于动态规划能量管理策略电动汽车的能耗影响。根据输入的不同路况信息,以电池荷电状态、电池放电能力、车辆需求功率为状态量,以增程器发电功率为控制量,建立能量损失数学模型。以城市循环工况(UDC)、新欧洲循环工况(NEDC)、世界轻型车测试循环工况(WLTC)为路况输入,分别得出了基于传统规则能量管理策略与基于动态规划能量管理策略的油耗。仿真结果表明,不同的行驶路况对车辆的能耗影响程度不同,应用动态规划策略的车辆相比于传统方法节油10.42%~24%。  相似文献   

8.
针对智能网联电动汽车在信号灯控路口的经济性驾驶问题,提出一种基于最优控制的经济性驾驶车速优化策略.首先,构建包含信号灯、车速限制等约束,以能量消耗最小化为目标的信号灯控路口车辆速度优化问题;然后,利用庞特里亚金极小值原理解析求解最优控制率;考虑到动态交通场景中车辆对未来交通信息的预测能力有限、信号灯约束条件多变等特点,提出了一种双层滚动距离域车速优化策略,将信号灯控路口经济性驾驶问题转化为分段最优控制问题,得到分段最优速度轨迹.仿真结果表明:在有限预测能力和无限预测能力2种情况下,所提出的经济性驾驶车速优化策略较加速—匀速—制动策略分别有9.2%和10.3%的能量节省;随着预测距离和信号灯控路口通行速度的增大,在提高通行效率的同时,能量节省效率进一步提高.  相似文献   

9.
针对传统深度Q学习对经验样本提取效率差、学习效率低的问题,提出一种改进深度Q学习的能量管理策略.首先,采用基于模糊控制的自适应低通滤波器进行功率分层,由超级电容承担需求功率的峰值部分.然后,设计基于深度Q学习的能量管理策略,以减少氢消耗量、提升燃料电池工作效率为目标,优化锂电池与燃料电池的能量分配.在策略训练过程采用基...  相似文献   

10.
闫德超  马超  杨坤  谭迪 《科学技术与工程》2021,21(26):11396-11404
为了进一步提高增程式电动汽车(extended range electric vehicle,EREV)的燃油经济性,在满足驾驶性能和车辆动力要求的前提下,根据低速、中速、高速典型工况下发动机功率分布分析,提出一种基于自适应权重粒子群算法(adaptive weighted particle swarm optimization,AW-PSO)优化的三点式最优功率控制策略。为验证其经济性能,基于MATLAB/Simulink开发动力系统模型以及整车能量管理策略。基于驱动成本理论,在多种国际标准工况下进行仿真对比,结果表明:相比功率跟随策略而言,基于工况的三点式功率控制策略实现平均12.95%的成本节省,而AW-PSO优化策略下平均节约成本提升到21.44%。  相似文献   

11.
为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。  相似文献   

12.
以某款纯电动客车为研究对象,以增加车辆续驶里程为目的,提出燃料电池增程式混合动力系统结构,根据性能指标对动力系统各部件进行匹配计算和选型.提出了开关/功率跟随式能量管理策略,基于Cruise和Simulink分别搭建了整车动力系统模型和燃料电池及能量管理策略模型并进行联合仿真.结果表明,采用文中提出的能量管理策略车辆经济性相对于开关式和能量跟随式两种控制策略分别提高62%和31%,续驶里程相对于该两种控制策略分别提高41%和18%.  相似文献   

13.
在ADVISOR软件环境中建立燃料电池增程式电动汽车动力系统模型,利用该模型设计基于模糊控制理论的整车能量管理策略,并以车辆最大续驶里程为优化目标,利用遗传算法对模糊函数和模糊规则进行优化.对比发现优化后的模糊控制管理策略能改善燃料经济性,提高整车续驶里程.典型工况下不同能量管理策略的整车仿真结果显示,本文所制定的模糊控制能量管理策略优于常见的恒温器及功率跟随能量管理策略,适合用于增程式电动汽车.  相似文献   

14.
基于ADVISOR进行二次开发,建立了燃料电池客车整车前向仿真模型.基于模糊控制方法制定了能量管理策略;为提升燃料电池耐久性,对模糊控制进行改进,提出改进后的模糊控制能量管理策略.中国典型城市工况下的仿真结果表明,改进后的模糊控制能量管理策略在车辆经济性和燃料电池耐久性方面均优于功率跟随式能量管理策略.  相似文献   

15.
车辆速度预测能为新能源汽车的能量管理策略提供重要的信息,但要准确地预测车速存在诸多困难。为克服交通状况、车辆类型和驾驶员意图等确定或随机因素对车速预测造成干扰的问题,提出了一种基于DK(DTW-based K-means)聚类模型的多工况速度预测器,该预测器通过DK模型对车速序列进行工况划分,并结合一维卷积神经网络和长短期记忆神经网络预测各工况下的未来车速。基于所提出的预测器,讨论了不同的输入序列长度及聚簇数对该预测器的影响,并比较了该预测器与其他常用模型的性能。结果表明,该预测器具有较好的多工况适应性,预测精度比其他模型更高。  相似文献   

16.
针对一款新型插电式混合动力轿车,以燃油经济性为目标,设计了其能量优化管理策略并进行了仿真验证。首先,建立了整车前向仿真模型;其次,综合考虑驾驶员需求、车辆及各部件状态,设计了基于规则的能量管理策略;再次,使用等效燃油消耗最小算法(ECMS)进一步优化转矩分配;最后,通过离线仿真和硬件在环仿真对上述策略进行测试验证。结果表明:与基于规则的能量管理策略相比较,优化后能量管理策略在新欧洲行驶工况(NEDC)下油耗降低4.29%;同时硬件在环试验也表明,所开发的等效燃油消耗最小(ECMS)控制策略能够在车载控制器中实时运行。  相似文献   

17.
新型功率分流混合动力系统能量管理预测优化   总被引:1,自引:0,他引:1  
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型。通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

18.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

19.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

20.
增程式电动汽车动力来源于增程器与动力电池,车辆运行过程中如何在两者之间分配需求功率,使得整车在行驶过程中燃油经济性最好,是增程式电动汽车能量管理策略核心的问题.提出一种基于动态规划的增程式电动汽车能量管理策略,运用动态规划对整个工况增程器与动力电池输出功率分配比例进行优化.欧洲标准行驶工况(NEDC)组合行驶工况的仿真结果表明:相比实车采用的恒温器式控制策略,基于动态规划的能量管理策略整车燃油经济性提高12.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号