首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文考察了Fe3O4/纳米级Fe0对污染水中Cr(VI)的去除效果,以及Fe3O4投加量、腐殖酸投加量、温度对Fe3O4/纳米级Fe0去除水中Cr(VI)的影响。结果表明:Fe3O4/纳米级Fe0对水中Cr(VI)的去除效果很好,在2min时Cr(VI)的去除率就能够达到91.4%,这个值比纳米级Fe0单独作用120min时对 Cr(VI)的去除率还要高;Fe3O4与纳米级Fe0的配比为7.5:1时,Fe3O4/纳米级Fe0对Cr(VI)的去除效果最好。温度的升高加速了Fe3O4/纳米级Fe0对水中Cr(VI)还原降解反应的进行。  相似文献   

2.
以大豆豆皮作为生物吸附剂,通过振荡方法吸附Cr(Ⅵ)浓度为10 mg/L的模拟重金属废水。研究了pH、吸附时间、豆皮投加量和Cr(Ⅵ)初始浓度对Cr(Ⅵ)吸附活性的影响。结果表明:当吸附时间为20 min,温度为30℃、pH=2~3、豆皮投加量为2 g/L时,Cr(Ⅵ)的去除率达到91.99%。此外,还对豆皮吸附Cr(Ⅵ)后的解析性能作了考察,其解析率达到95.01%,并且可反复使用。豆皮是安全的天然产物,可用于去除废水中的重金属离子,也可用于去除饮用水中的重金属离子。  相似文献   

3.
以纯化膨润土为原料,通过铁盐与膨润土浆液反应制备非均相纳米磁改性Fe3O4/膨润土复合材料,研究其对甲基橙的降解性能。结果表明,纳米磁性颗粒以Fe3O4附载于膨润土上形成磁性集合体,其对甲基橙废水等温吸附符合Langmuir等温吸附模型。在pH为7、温度为25℃、纳米磁性膨润土投加量为1g/L、H2O2投加量为2.5mmol/L、降解时间为120min条件下,对模拟甲基橙废水降解率达96%,CODCr去除率为94.7%,色度去除率为88.8%。  相似文献   

4.
为去除废水中的焦糖色素,采用H2O2/Fe2+和H2O2/Fe2+/UV对焦糖色素去除进行研究.实验考察了H2O2和Fe2+投加量、pH值、反应时间对焦糖色素去除率的影响,在此基础上进一步考察了H2O2/Fe2+/UV对焦糖色素去除效果.结果表明,对于芬顿试剂,H2O2与Fe2+反应的化学计量数为8;pH值为3,反应时间30 m in时,焦糖色的去除效果较好,去除率达到83%.采用H2O2/Fe2+/UV可进一步提高焦糖色的去除效果,去除率可提高到90%.因此采用H2O2/Fe2+或H2O2/Fe2+/UV法获得良好的焦糖色去除效果.  相似文献   

5.
印迹与交联壳聚糖吸附水中微量Cr(VI)的对比试验研究   总被引:1,自引:0,他引:1  
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L 的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

6.
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

7.
 为开发新型环境材料,改进治理技术以控制或修复污染水体中Cr(Ⅵ),采用NaBH4还原Fe3+制备纳米级零价铁(NZVI).X射线衍射(XRD)及扫描电镜(SEM)测试表明,制备的纳米铁颗粒纯度高、粒径小、粒度均匀.以Cr(VI)为研究对象,批试验考查了溶液初始浓度、NZVI投加量、温度等条件对去除效果的影响,研究了NZVI对Cr(VI)的吸附动力学.结果表明,室温、pH值为6-7时,NZVI加入量为0.15g/L,水体中Cr(VI)浓度为30.0mg/L时,Cr(VI)最大吸附量为198.02mg/g,Cr(VI)在NZVI上的吸附符合准二级动力学方程.实验结果显示,纳米零价铁能快速去除水体中Cr(VI);溶液初始浓度、NZVI投加量等是影响Cr(VI)脱除的主要因素,Cr(VI)去除率随反应温度和NZVI投加量升高而升高,随初始浓度升高而降低.实验表明,该纳米铁在废水除铬领域具有较好的应用前景.  相似文献   

8.
采用了液相还原法制备膨润土负载纳米铁,分别考察了膨润土、纳米铁和负载纳米铁对1L、100mg/L的甲基橙溶液的去除率,并探讨了时间、pH值、投加量、温度等对负载纳米铁去除水中甲基橙的影响.结果表明:在投加量为1.00g/L、60r/min、30℃、pH为6.00的条件下,负载纳米铁去除水中甲基橙在前20 min时效果最...  相似文献   

9.
以高温凝结水的净化为应用背景,采用孔径为4 nm的陶瓷膜去除水中微量Fe3+。考察Fe3+浓度、pH及操作参数等对陶瓷膜分离性能的影响。结果表明:随着Fe3+浓度增大,陶瓷膜对Fe3+的去除率减小;当Fe3+质量浓度小于50 mg/L时,陶瓷膜对Fe3+的去除率大于98%,操作条件如温度和膜面流速(CFV)的提高均有利于提高陶瓷膜对Fe3+的截留率;温度升高有利于提高膜过滤通量,操作压力对通量的拐点为0.2 MPa,膜面流速的拐点在3 m/s左右;pH对Fe3+的去除率影响显著,主要由于pH影响了Fe3+在水中的化学构成。  相似文献   

10.
在静态条件下,对PQAAM吸附含重金属离子Cr(Ⅵ)的电镀废水进行了研究,探讨了PQAAM用量、废水pH值、吸附时间、吸附温度对去除Cr(Ⅵ)效果的影响.结果表明,在废水pH值6.0~8.0,Cr(Ⅵ)浓度0~100 mg/L范围内,吸附时间为100 min,吸附温度为20 ℃,按Cr(Ⅵ)与PQAAM质量比为1∶30投加PQAAM进行处理,Cr(Ⅵ)去除率可达98%以上.含Cr(Ⅵ)的电镀废水经PQAMM吸附后,废水中Cr(Ⅵ)的含量显著低于国家排放标准.表5,参9.  相似文献   

11.
研究了壳聚糖稳定纳米零价铁对土壤中Cr(Ⅵ) 的去除效果. 实验结果表明: 去除效率随零价铁投加量的增加而增大, 最大去除效率达95.9%, 是100目铁屑去除效率的6倍; 土壤pH值和土壤中Cr(Ⅵ)的初始含量与去除效率成反比; 零价铁对土壤中Cr(Ⅵ)的去除是吸附作用与还原作用共同发生的结果; 纳米零价铁对Cr(Ⅵ)的还原过程符合伪一级反应动力学,其表观速率常数kobs为0.016/min.  相似文献   

12.
采用KMnO4溶液在回流状态下对颗粒活性炭进行改性,得到新的改性炭。考察了高锰酸钾浓度、pH值、投加量、吸附时间对Cr(Ⅵ)去除率的影响,并测得吸附等温线。结果表明:改性炭对Cr(Ⅵ)的吸附在低pH值时效果更好,且当KMnO4浓度为0.03~0.04mol/L时,得到的改性炭吸附性能非常好;在pH值为4.0及25℃条件下,AC-3(吸附剂编号)对Cr(Ⅵ)的饱和吸附量比AC-0提高了11.6%;当温度由25℃升高到40℃时,AC-3对Cr(Ⅵ)的饱和吸附量提高了28.0%;改性炭对Cr(Ⅵ)的吸附作用符合Langmuir方程。  相似文献   

13.
微电解-Fenton氧化法去除垃圾渗滤液中有机物   总被引:1,自引:0,他引:1  
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH =3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%.Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2O2投加量为11 mL/L,反应时间为100 min,出水COD为4480 mg/L,COD总去除率为63.8%.垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果.  相似文献   

14.
采用液相还原法制备了纳米Fe/Ni(nZVI/Ni)及纳米零价铁(nZVI),借助TEM、EDS、高效液相色谱仪等探究了Ni对nZVI/Ni还原水体中Cr(Ⅵ)的促进机制。结果表明,Ni的加入可降低Cr(Ⅵ)还原反应的活化能,有效地提高了纳米Fe/Ni对水体中Cr(Ⅵ)的去除率;在改善nZVI/Ni材料还原水体中Cr(Ⅵ)能力方面,Ni阻止Fe~0氧化以及形成Fe-Ni原电池发挥了作用,但其将nZVI腐蚀产物H_2转化为活性氢原子并未能促进Cr(Ⅵ)的还原。  相似文献   

15.
TiO2/Fe3O4光催化剂处理三氯乙烯的研究   总被引:1,自引:1,他引:0  
采用溶胶凝胶法制备出易于固液分离的磁载TiO2/Fe3O4 光催化剂.通过处理水中三氯乙烯研究其光催化活性,并对该磁载光催化剂的制备工艺参数进行优化.实验结果表明,在焙烧温度为500 ℃、焙烧时间3 h,得到的磁载光催化剂的活性最高,当水中三氯乙烯质量浓度为10 mg/L、反应体系pH值为7.0,光催化剂投加量为0.1 g/L、空气流量为40 mL/min时,三氯乙烯去除率可达到88.76%.磁载光催化剂可以实现磁分离回收,具有较高的回收率.  相似文献   

16.
以毛竹遗态Fe_2O_3/Fe_3O_4/C复合材料为吸附剂,研究铬(Ⅵ)不同的初始浓度、溶液初始pH不同、吸附剂不同的投加量、不同粒径的条件下对吸附效果的影响。结果表明:Cr(Ⅵ)溶液初始p H对吸附效果的影响最为显著,其次是吸附剂用量。温度、振荡时间、投加量等因素对Cr(Ⅵ)吸附作用影响不大。优化工艺的组合为:Cr(Ⅵ)浓度为10 mg/L,溶液初始pH=1,温度为45℃,吸附剂粒径小于100目,吸附剂用量为0.5 mg/50 mL,吸附时间为5 h。  相似文献   

17.
Fe/Cu催化还原去除饮用水消毒副产物三氯乙酸   总被引:2,自引:0,他引:2  
以高致癌风险的饮用水卤化消毒副产物(halogenated disinfection by-products,HDBPs)三氯乙酸(TCAA)为去除目标物,研究了Fe/Cu催化还原去除TCAA的效果,包括Fe/Cu质量比、Fe/Cu混合物投加量、pH值、有机物浓度和摇床转速等因素对Fe/Cu催化还原去除TCAA的影响.结果表明,Fe/Cu能够有效脱除TCAA,m(Fe):m(Cu)为10:1时的TCAA去除效果最佳;Fe/Cu最佳投加量为30 g·L-1;Fe/Cu还原脱氯去除TCAA最佳pH值在4~8之间;有机物浓度对Fe/Cu还原脱氯存在负面影响;在摇床转速、反应时间、投加量、pH值和UV254分别为200 r·min-1,160 min,30 g·L-1,6.82和0.117 cm-1的条件下,Fe/Cu催化还原对TCAA的去除率达到97.39%,并且Cu未被消耗,外扩散Fe/Cu催化还原反应的影响可以忽略,Fe/Cu对TCAA的催化还原脱氯降解过程符合拟一级反应.  相似文献   

18.
采用Fenton氧化技术深度处理青霉素废水,通过单因素试验,研究了pH、H2O2/Fe2+的摩尔比值、H2O2的投加量和反应时间T,4个因素对COD的去除效果及各因素间影响.结果表明:处理废水的最佳条件为废水初始pH为3,H2O2/Fe2+的摩尔比值为1∶1,H2O2的投加量为300 mg/L,反应时间为60 min,此时COD的去除率高达59%左右.在单因素基础上,使用Design Expert软件设计,通过二次回归得到COD去除率与废水的初始pH,H2O2/Fe2+的摩尔比,H2O2的投加量关系的回归模型,该模型能够较好地预测COD的去除率.同时,3个因素对COD去除效果的影响排序为H2O2投加量>H2O2/Fe2+的摩尔比>溶液初始pH,最后得到的优化参数为:pH为2.98,H2O2/Fe2+的摩尔比为0.76∶1,H2O2的浓度为295.10 mg/L,此时COD的去除率为57.415 5%.  相似文献   

19.
通过化学氧化沉淀法制备出球形和八面体形貌的Fe3O4纳米颗粒,对其进行XRD、Raman和SEM等表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了不同形貌Fe3O4的类Fenton催化活性。结果表明:使用化学氧化沉淀法制备Fe3O4,在低pH(8~9)条件下所得到的产物呈类球形,高pH(13)条件得到的产物为八面体形貌,其粒径均在210nm左右,并且结晶良好。Fe3O4/H2O2体系能有效降解橙黄II,并且催化反应主要发生在Fe3O4表面,最佳催化条件为pH 3.0、温度40℃。类球形Fe3O4纳米颗粒的催化活性高于八面体Fe3O4,并且Fe3O4具有良好的化学稳定性,重复使用4次效果稳定。  相似文献   

20.
为制备硅油基Fe3O4磁流体,采用化学共沉淀法制备平均粒径为11 nm纳米Fe3O4颗粒,利用透射电子显微镜(TEM)、选区电子衍射花样(SAED)、X线衍射分析(XRD)、振动磁强计(VSM)等手段对试样的微观形貌、晶体结构以及磁性能进行表征。在测得无水乙醇中Fe3O4粉体的pH-Zeta电位图基础之上,研究了表面活性剂的类型、表面活性剂的加入量以及超声分散的时间对纳米Fe3O4颗粒分散性能的影响。结果表明:化学共沉淀法制备出的纳米Fe3O4颗粒为面心立方结构,颗粒表面光洁且呈现规则的圆球形,粉体的粒径分布较窄。随着超声时间的延长和表面活性剂使用量的增加,纳米Fe3O4颗粒在无水乙醇中的分散效果在特定点呈现最佳效果之后逐步变差,5种表面活性剂分散效果由好到差的顺序是:聚乙烯吡咯烷酮(PVP)、司班-80(SPAN-80)、司班-85(SPAN-85)、油酸(OA)、硅烷偶联剂KH-550。推荐纳米Fe3O4颗粒在无水乙醇中的分散工艺为:pH=7,PVP加入的质量分数3%,超声时间35 min,超声功率560 W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号