首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenton法处理高浓度树脂废水   总被引:1,自引:0,他引:1  
采用Fenton氧化法预处理树脂废水,通过正交试验和单因素试验,考察了Fe^2+用量、H2O2投加量、pH值和反应时间等因素对Fenton试剂处理效果的影响,确定了最佳工艺条件.结果表明:在最佳工艺常温下,pH=2,30%H2O2投加量为52 mL/L(分三次投加),Fe^2+/H2O2摩尔比1/12.5,反应时间2 h,此时CODCr去除率可达82%以上,处理效果较好,可应用于高浓度树脂废水的预处理.  相似文献   

2.
以H2O2投加量、Fe2+投加量、pH值为考察因素,通过单因素和正交试验,确定各因素对实验结果影响的主次顺序为:pH值〉H2O2量〉Fe2+量;最优因素组合为:H2O2投加量为2mL/L,Fe2+投加量为4g/L,pH值为3。  相似文献   

3.
本文对Fenton试剂处理焦化废水进行了研究,通过探讨H2O2投加量、[Fe2+]/[H2O2]、pH值、反应时间等因素对COD去除率的影响,确定了以下操作条件:H2O2投加量158mmol/L,[Fe2+]/[H2O2]=1:10,pH=3,反应时间为30min。在上述条件下,焦化废水COD去除率达89.9%。在此基础上,研究了H2O2投加方式对处理效果的影响。结果表明,H2O2采用分批投加时,会改善处理效果。  相似文献   

4.
白晓琳 《甘肃科技》2011,27(1):55-57
研究采用超声—Fenton试剂联合作用降解结晶紫染料模拟废水,将超声—Fenton试剂联合作用与两种方法单独作用对废水的处理效果进行了对比,考察了超声功率、初始pH、Fe2+和H2O2投加量对结晶紫模拟废水的处理效果。结果表明,超声与Fenton试剂对结晶紫溶液的脱色有协同作用,降解率远远大于两种方法单独作用。增大超声功率有利于模拟结晶紫废水的降解。实验最适pH值为6.0。对于浓度为50mg/L的模拟结晶紫废水,最佳Fe2+浓度为2.8mg/L、最佳H2O2浓度为4.5mg/L。  相似文献   

5.
采用Fenton氧化的方法对湿法腈纶废水二级生化出水进行深度氧化处理.通过单因素实验考察了Fenton试剂投加量、初始pH值及反应时间对该废水处理效果的影响.研究表明,ρH2O2为300mg/L,ρFe2+为300 mg/L,反应初始pH值为3.0,反应时间为120 min时,Fenton氧化反应对COD达到最大去除率57%.另外,通过FT-IR和三维荧光光谱分析探讨了该废水有机污染物在Fenton氧化过程中的去除规律.结果表明,生化出水中某些难降解芳香性物质可以被Fenton试剂氧化分解,废水的可生化性得到提升.  相似文献   

6.
制药废水是一种难生物降解的高浓度有机工业废水,处理困难.研究以某制药股份有限公司综合排放废水为对象,分别采用Fenton和UV-Fenton法对制药废水进行处理,分析试剂投加量、反应初始pH和反应时间等对反应的影响.结果表明,Fenton法处理制药废水的最佳条件为:FeSO4·7H2O投加0.036 mol/L,H2O2投加0.128 mol/L,初始pH为4.3,反应时间为2 h,CODCr去除率为43.9%. UV-Fenton法处理制药废水缩短反应时间,减少试剂投加量,最佳处理条件为:UV处理时间为7 min,FeSO4·7H2O投加0.029 mol/L,H2O2投加0.102 mol/L,初始pH为4.3,反应时间为75 min,最佳条件下CODCr去除率优于Fenton法,可达63.5%,且污水B/C增至0.39,提高可生化性.  相似文献   

7.
采用Fenton试剂处理碱性紫染料废水,考察pH值、H2O2和Fe2 投加量、反应温度等对脱色效果的影响.实验结果表明,当碱性紫的初始浓度为50 mg.L-1,反应温度为25℃,pH值为3.0,H2O2投加量为0.5Qth,n(H2O2)∶n(Fe2 )为10∶1的条件下,脱色率可达98%以上.在相同条件下,Fenton试剂对甲基橙和亚甲基蓝染料废水均取得满意的处理效果.  相似文献   

8.
Fenton试剂氧化预处理橡胶促进剂生产废水   总被引:6,自引:0,他引:6  
采用Fenton试剂氧化处理橡胶促进剂生产废水.研究H2O2投加量、Fe2 投加量、反应时间及进水浓度对COD去除率的影响,通过实验确定了Fenton试剂处理该废水的最佳操作条件为:Fe2 加入量0.4g.L-1,反应时间20 min,H2O2加入量为18 mL.L-1,pH=3.  相似文献   

9.
颜料中间体生产废水的生化尾水的水质虽已达到园区污水处理厂的接管标准,但由于难降解有机物的残留,使得园区污水处理厂生化系统不能稳定运行。为寻求解决方法,采用Fenton氧化法对颜料中间体废水的生化尾水进行深度处理,通过正交试验和单因素试验,考察初始反应pH、H2O2投加量、摩尔比n(H2O2)∶n(Fe2+)和反应时间对废水化学耗氧量(COD)、紫外吸光度(UV254)和色度去除率的影响。结果表明:最佳反应条件为初始反应pH 4,30%H2O2投加量1 mL/L,n(H2O2)∶n(Fe2+)=5∶1,反应时间3 h,COD去除率可达46%,UV254去除率可达84%,色度去除率可达95%。根据实际工程应用,深度处理的药剂成本为2元/t废水,去除COD的成本为22.7元/kg。针对较难二次生化处理的废水先进行Fenton氧化预处理,提高其可生化性后,再与其他易生化处理的废水一同处理,既节省成本,又利于水质的稳定达标。  相似文献   

10.
用Fenton试剂处理磺胺甲恶唑废水,以测定COD值为主要指标,研究了Fe2+的投加量、H2O2投加量、p H值、H2O2投加次数和反应时间等因素对处理磺胺甲恶唑废水的影响.结果表明:对于COD质量浓度为1 166.6mg/L的磺胺甲恶唑模拟制药废水,当Fe2+的投加量为0.2 mol/L,H2O2投加量1.0 mol/L,p H值为3,H2O2投加次数4次,反应时间为60 min的条件下,COD去除率达到最大,为88.9%.说明Fenton高级氧化体系对此类难以生物降解的抗生素制药废水处理的效果很好.  相似文献   

11.
以活性艳红KD-8B溶液作为模拟印染废水,采用Fenton试剂法对其进行催化降解.考察了体系初始pH值、H2O2和FeSO4的投加量以及反应时间等因素对模拟废水的色度及COD去除率的影响,优化了反应条件.实验确定最佳反应条件为:室温下,pH=2.5,[Fe2+]=3.0 mmol/L,[H2O2]=39.2 mmol/L,反应时间40 min,30 mg/L的模拟染料废水脱色率和COD去除率分别达到96.6%和86.7%.Fenton试剂与厌氧微生物处理相结合的处理方式,可以显著提高模拟废水的色度和COD去除率,均达98%以上,尤其COD的去除率比单纯采用厌氧生物法和Fenton试剂法分别高出34.6%和13.1%.  相似文献   

12.
目的研究H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间对高质量浓度制药废水的处理的影响.方法以阜新某集团公司生产制药原料排出的废水为对象,将Fenton技术衍生,设计Fenton/微波工艺,进行静态试验.结果当H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间改变时,出水COD都有很大改变.当试验用水为100 mL的制药废水时,H2O2与Fe2+的物质的量比50∶1,H2O2投加量为Qth,pH值为3,微波辐照功率为500 W,辐照时间为9 min时,COD去除率最大,可达到83.1%,出水COD在97.3~243.4 mg/L范围内.结论 Fenton/微波联合工艺作为一种Fenton技术衍生而来的工艺,虽不能使高质量浓度制药废水达到排放标准,但是可以氧化不易降解的有机物,降低后续工艺的处理难度.  相似文献   

13.
以去除垃圾渗滤液生化出水中的CODCr和腐殖酸相对含量(UV254)为研究内容,对Fenton技术应用及其工艺技术条件优化进行了实验室条件下的模拟试验研究。结果表明,1)快速Fenton工艺优化条件为:初始pH值为4.0,H2O2投加量为1500 mg/L,Fe2+投加量为500 mg/L,静置时间120 min,CODCr由处理前的652 mg/L降到处理后的300.06 mg/L,去除率达53.99%;2)光催化Fenton氧化优化条件为:初始pH值为4.0,H2O2投加量为1000 mg/L,紫外灯功率为72 W,反应时间为120 min,CODCr由处理前的300.06 mg/L降到处理后的86.4mg/L,去除率达71.18%。说明,该工艺对处理垃圾渗滤液生化出水是有效的,可进行大规模的中试研究。  相似文献   

14.
采用UV/Fenton氧化处理难降解腈纶废水,研究了Fe2 和H2O2的投加量、pH值、光照时间、光照强度、有机物的浓度等条件对降解腈纶废水效果的影响.通过实验得出了UV/Fenton试剂氧化处理腈纶废水的最佳反应条件为:原水样pH3,Fe2 浓度为10 mmol·L-1,H2O2浓度为20 mmol·L-1,紫外光照强度为l000W(λ=365nm),光照时间为50min,COD降解率最高达62.77%.  相似文献   

15.
采用Fenton氧化技术深度处理青霉素废水,通过单因素试验,研究了pH、H2O2/Fe2+的摩尔比值、H2O2的投加量和反应时间T,4个因素对COD的去除效果及各因素间影响.结果表明:处理废水的最佳条件为废水初始pH为3,H2O2/Fe2+的摩尔比值为1∶1,H2O2的投加量为300 mg/L,反应时间为60 min,此时COD的去除率高达59%左右.在单因素基础上,使用Design Expert软件设计,通过二次回归得到COD去除率与废水的初始pH,H2O2/Fe2+的摩尔比,H2O2的投加量关系的回归模型,该模型能够较好地预测COD的去除率.同时,3个因素对COD去除效果的影响排序为H2O2投加量>H2O2/Fe2+的摩尔比>溶液初始pH,最后得到的优化参数为:pH为2.98,H2O2/Fe2+的摩尔比为0.76∶1,H2O2的浓度为295.10 mg/L,此时COD的去除率为57.415 5%.  相似文献   

16.
Fenton试剂对含锰矿井废水处理实验   总被引:1,自引:1,他引:0  
为了解决矿井水中锰去除难度较大的问题,使用Fenton试剂对含锰矿井水进行处理。考察了H2O2:Fe2+、反应温度、H2O2的投加量、pH、反应时间对Fenton试剂氧化除锰的影响,并讨论了Fenton试剂高级氧化除锰的机理。研究结果表明:Fenton试剂对含锰矿井水的处理效果很好,原水中Mn2+的初始浓度为2 mg/L,当H2O2:Fe2+摩尔比为3:1,反应温度为25°C,H2O2的投加量为8 mmol/L,pH值为5,反应时间为10 min的时候,Mn2+的去除效率可以达到84%。Fenton试剂生成的具有强氧化性的.OH能有效处理矿井水中的Mn2+。  相似文献   

17.
以Fenton(Fe^3+/H2O2)光催化降解草甘膦废水,跟踪体系化学需氧量(Chemical Oxygen Demand,COD),研究了不同条件下(光源、试剂浓度和酸度等)废水光催化氧化特性及光催化反应条件.探讨了在太阳光及紫外光照射条件下Fenton试剂组分Fe^3+与H2O2不同投料比、投料量、介质酸度对光催化降解废水的影响.结果表明,利用太阳光、紫外光能显著提高废水降解速率;太阳光照射条件下,Fe^3+/H2O2为1:10投量比,pH=3时,对废水COD降解效果最佳,COD去除率达82%.  相似文献   

18.
目的研究非均相UV/Fenton法对活性艳红X-3B染料废水的氧化降解效果,确定非均相UV/Fenton法处理染料废水的工艺条件.方法在自制光反应器中,采用非均相UV/Fenton氧化法对活性艳红X-3B模拟染料废水进行处理,通过试验研究分析H2O2投加量、催化剂投加量、p H值、反应时间等影响因素对非均相UV/Fenton氧化法降解活性艳红X-3B染料废水效果的影响.结果当H2O2投加量为理论投加量,催化剂投加量为1g/L,初始p H=4,常温下反应60 min时,活性艳红X-3B的脱色率和COD的去除率分别达到92.8%和72.3%.结论非均相UV/Fenton氧化法处理活性艳红X-3B染料废水的效果较好,其中H2O2投加量和催化剂投加量对处理效果影响较大.非均相UV/Fenton氧化法拓宽了p H值适用范围.  相似文献   

19.
采用光/电Fenton耦合技术处理退浆废水中难生物降解的高分子物质聚乙烯醇(PVA),考察FeSO4.7H2O投加量、H2O2投加量、初始pH、电流强度、反应时间对PVA降解效果的影响。结果表明:光/电Fenton耦合技术处理退浆废水中聚乙烯醇的最佳反应条件为:pH 4,FeSO4.7H2O投加量14.2 mmol/L,H2O2投加量ρ(H2O2)/COD=2.3,恒压电流强度1 A,反应时间120 min。在此条件下,化学耗氧量(COD)去除率达91%;总有机碳(TOC)去除率达80%;生化耗氧量(BOD)与COD比值从原水的0.007提高到0.9。  相似文献   

20.
张燕华  葛建新 《科技信息》2012,(21):242-243
采用Fenton化学氧化法对造纸废水进行深度处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除率的影响。在H2O2(3%)投加量为13.33mL/L,FeSO4.7H2O投量为0.9g/L,pH为5,反应15min后静置5min的条件下,初始COD为290mg/L,色度为50倍的造纸生化出水的COD去除率可达到72%。结果表明,Fenton化学氧化法深度处理该废水可以取到很好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号