首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
李莉 《甘肃科技》2014,(14):136-139
采用根钻法对甘肃小陇山林区油松(Pinus tabu laeformis)、落叶松(arix gmellini Rupr)锐齿栎(Quercusaliena var.acu teserrata)和针阔混交林细根生物量及其空间分布格局进行了研究。研究的4种林分细根生物量依次为,锐齿栎针阔混交林落叶松林油松林,细根生物量最大的锐齿栎林达到3216.109kg·hm-2,最小的油松林为2409.724kg·hm-2。对4种林分各个土层细根生物量和土壤深度进行了相关性分析,发现,细根生物量和土壤深度之间呈现出负相关关系,也就是说细根生物量随着土壤深度增加而下降,4种林分55%以上的细根都分布于0~20cm的土层中。油松细根生物量受土层深度的影响最为明显,其相关系数最高,为-0.819;最小的针阔混交林为-0.472。土壤中细根的生物量及空间分布格局与群落类型有着密切的关系,不同森林类型细根生物量及其在土壤中的分布格局存在差异。  相似文献   

2.
不同类型樟子松人工固沙林土壤质量研究   总被引:2,自引:0,他引:2  
从土壤微生物、土壤持水性、土壤物理、化学性质方面探讨了不同类型樟子松人工固沙林土壤质量状况,得出针阔混交林比针叶纯林土壤质量高的结论.松杨混交林、松枫混交林林下微生物细菌、真茵数量分别比樟子松纯林高1~3倍,表层枯枝落叶量比纯林高8.54%~10.02%,0~20 cm最大持水量提高了4%~5%.不同林分类型间土壤差异不大,混交林有降低趋势;养分状况表层有较明显差异,但深层土壤中除速效N之外,其他各项养分含量差异不明显,表明林木对土壤的改良作用是一个长期的持续过程  相似文献   

3.
【目的】评价帽儿山地区纯林与混交林(红皮云杉纯林、长白落叶松纯林、胡桃楸和红皮云杉混交林、胡桃楸和长白落叶松混交林、水曲柳和红皮云杉混交林、水曲柳和长白落叶松混交林)土壤生态系统中参与土壤碳代谢的微生物群落特征。【方法】借助BiologMT技术,比较了纯林与混交林之间根际土壤微生物对不同碳源类型的利用情况。【结果】不同林型土壤微生物平均颜色变化率(AWCD)呈现阔叶林高于针叶林,胡桃楸针-阔混交林型中针叶林土壤微生物AWCD值优于与水曲柳混交林型。胡桃楸针-阔混交林中,针叶林的Shannon指数显著地高于水曲柳针-阔混交林。Simpson优势度指数与Shannon多样性指数变化趋势较为相似。羧酸、氨基酸和糖类这3类碳源是导致微生物代谢呈现差异的主要碳源。长白落叶松、红皮云杉与水曲柳混交后对糖类、羧酸和氨基酸3种主要碳源的利用程度均有所下降,可能是导致AWCD值较低的原因之一。【结论】胡桃楸针-阔混交林比水曲柳针-阔混交林以及针叶纯林更有利于土壤微生物群落的碳代谢功能发挥。  相似文献   

4.
经营方式对毛竹林土壤肥力指数的影响   总被引:2,自引:1,他引:1  
以浙江省富阳市尖山林区的毛竹(Phyllostachys edulis)纯林和天然起源毛竹木荷(Schima superba)混交林为试验对象.设置马尾松枫香石栎为主要组成树种的针阔混交林和香樟苦槠常绿阔叶林作对比,2003年7月采集不同林分土壤样品并分析土壤养分的空间变异状况.依据模糊数学原理,计算土壤肥力指标的隶属度和肥力指数值.结果表明:各林分土壤层次Ⅰ(0~10 cm)肥力指数基本高于层次Ⅱ(10~30 cm)和层次Ⅲ(30~50 cm),毛竹木荷混交林土壤层次Ⅰ肥力指数高于毛竹纯林.虽然垦复毛竹纯林土壤层次Ⅰ肥力指数分别小于针阔混交林和常绿阔叶林,但是层次Ⅱ和层次Ⅲ的肥力指数却高于其他林地,未垦复毛竹林各层次土壤肥力指教居各林分最小.毛竹木荷混交林与针阔混交林的土壤肥力指数相近.  相似文献   

5.
比较研究了井冈山自然保护区毛竹纯林及竹杉混交林的土壤水文-物理性质。结果表明:(1)毛竹纯林与毛竹混交林土壤容重随土壤深度的增加而增大,纯林各层土壤容重比混交林大。竹毛纯林0~20 cm土层非毛管孔隙、毛管孔隙、总孔隙度均比混交林要大;20~40 cm土层,纯林的土壤容重比混交林要小;40~60cm土层,纯林与混交林的...  相似文献   

6.
以4种不同林型的杉木人工林(杉木纯林、杉木×小叶桢楠、杉木×闽楠、杉木×缅茄)为研究对象,探讨纯林及其混交林不同土层(0~20 cm、20~40 cm)的土壤养分和酶活性变化规律;采用主成分分析法对不同林型的土壤肥力进行综合评价,为杉阔混交林营造以及持续健康经营提供科学依据.结果表明:1)4种杉木人工林表层土壤(0~20 cm)的养分含量及酶活性均明显高于下层土壤(20~40 cm),呈现明显的表聚现象;2)在同一土层,杉木×闽楠混交林的土壤pH、铵态氮含量最高,杉木×缅茄混交林土壤有机质、全氮、硝态氮、有效磷及速效钾含量最高,杉木×小叶桢楠混交林土壤的全磷、全钾含量最高,脲酶、酸性磷酸酶活性最高;3)Pearson相关性分析表明,各土壤肥力因子之间存在较为显著(P<0.05)的相关关系,4种土壤酶活性间呈现显著或极显著(P<0.01)正相关关系;4)主成分分析结果显示,土壤肥力综合评价排序为杉木×小叶桢楠>杉木×缅茄>杉木纯林>杉木×闽楠.总体上看,杉木×小叶桢楠与杉木×缅茄混交林对林地土壤养分及酶活性的改善作用显著,有利于提高林地生产力,可为杉木纯林改...  相似文献   

7.
杨毅敏  王健  郭诚  李秀杰  李军 《贵州科学》2005,23(Z1):84-87
采用挖掘法和土壤常规观测方法对香草兰槟榔农林复合系统土壤物理性状及根系分布进行了分析.结果表明与当地土壤相比,混交林表土层比较疏松,0~20cm土壤容重比当地同层土壤小0.13 g·cm-3.混交林下各土层土壤含水量分布具有规律性,0~80cm土层平均为12.8%.混交林土壤平均pH值为4.7,略小于当地土壤pH值.混交林平均土壤有机质含量为1.9%,处于全省较高水平,尤其0~20cm土层中有机质含量为1.96%,同比当地土壤高0.7%.香草兰槟榔复合系统根系多集中在0~40cm土层中,占总根量的82.3%,其中,槟榔根系多集中在20~40cm土层中,占总根量的51.6%,香草兰根系水平分布在0~30cm的表土层中,水平分布范围30~50cm.<1mm和1~3mm根系主要集中在20~40cm土层中,占总根量的48%,而槟榔纯林中<1mm和1~3mm根系主要集中在0~20cm土层中,占总根量的37.9%.  相似文献   

8.
以雾灵山低山区为研究区域,研究了板栗、玉米、玉米和板栗间种等不同土地利用类型下土壤含水量的差异.结果表明,同一海拔高度玉米和板栗间作方式下0~20 cm、20 cm~40 cm以及40 cm~60 cm三个层次的土壤水分含量均高于单种板栗和单种玉米的土地利用类型,山地坡底土壤不同剖面层次水分含量均高于坡顶和坡腰.不同土地利用方式下土壤含水量的变化受地形、植物郁闭度等因素的影响.  相似文献   

9.
雪灾是一种重要的自然干扰类型,通过改变资源的有效性和异质性而对森林生态系统过程产生显著影响。笔者以福建武夷山的常绿阔叶林为试验地,探讨雪灾干扰后不同土层(0~10 cm、10~25 cm和25~40 cm)常绿阔叶林土壤微生物生物量氮和可溶性氮的变化。结果表明:受灾常绿阔叶林土壤微生物生物量氮、可溶性有机氮、铵态氮含量除25~40 cm土层外都显著高于对照,随土层深度的增加而减少;受灾常绿阔叶林各土层土壤硝态氮含量与对照无显著差异。相关分析显示土壤微生物生物量氮、可溶性有机氮、铵态氮含量均与土壤温度、土壤湿度呈极显著正相关。研究结果表明,由于雪灾导致了土壤温度和湿度的改变,土壤中的氮可能以铵盐和可溶性有机氮的形式从生态系统中流失。  相似文献   

10.
【目的】探讨不同森林经营模式对土壤氮含量及相关酶活性的影响,为太湖沿岸防护林模式构建提供依据。【方法】在江苏省宜兴市周铁镇选取林龄相同的杨树纯林、杨树石楠混交林以及杨树女贞混交林3种森林经营模式,挖取1 m深的土壤剖面采集土壤样品,测定各模式下春季土壤的氮含量及相关酶活性,并分析其与土壤理化性质之间的关系。【结果】①试验地土壤全氮含量为0.17~1.35 g/kg,各森林经营模式之间土壤全氮含量存在显著差异(df=2,F=102.820,P<0.05),与杨树纯林相比,杨树女贞混交林和杨树石楠混交林土壤全氮含量分别增加了21.8%、69.7%;随着土层深度增加,2种混交林土壤全氮含量逐渐降低,各土层之间差异显著(df=3,F=108.289,P<0.05);土壤硝态氮、铵态氮含量分别为5.67~9.79、3.22~12.43 mg/kg,各森林经营模式之间差异显著(df=2,F=18.764,P<0.05;df=2,F=9.655,P<0.05),杨树女贞混交林和杨树石楠混交林土壤硝态氮含量相比杨树纯林分别降低了11.8%、27.3%,而杨树女贞混交林和杨树石楠混交林的土壤铵态氮含量在≥20~40、≥40~60和≥60~80 cm土层显著增加(df=3,F=106.230,P<0.05;df=3,F=119.794,P<0.05);随着土层深度的增加,3种经营模式土壤硝态氮和铵态氮含量逐渐降低;土壤微生物生物量氮含量为6.04~9.52 mg/kg,与杨树纯林相比,杨树女贞混交林土壤微生物生物量氮含量增加了7.5%;②土壤脲酶活性、硝酸还原酶活性和亚硝酸还原酶活性分别为3.43~9.16、0.16~1.04、0.15~0.25 mg/(g·d),与杨树纯林相比,杨树女贞混交林土壤脲酶活性在各土层均显著增加(df=2,F=19.600,P<0.05),而土壤硝酸还原酶活性在土壤表层则显著降低(df=3,F=43.637,P<0.05);杨树石楠混交林土壤脲酶活性在各土层均显著降低(df=3,F=17.825,P<0.05),而土壤硝酸还原酶活性则相反;3种森林经营模式下土壤亚硝酸还原酶活性无显著差异。表明脲酶和硝酸还原酶对经营模式的响应更敏感,可作为土壤氮变化的指标。此外,不同森林经营模式下土壤氮含量及酶活性与含水量、pH密切相关。【结论】与杨树纯林相比,杨树女贞混交林和杨树石楠混交林提高了土壤速效养分,有效吸收并削减土壤中的硝态氮含量,降低硝酸盐向土壤深层淋溶导致污染浅层地下水的风险。同时,土壤微生物量氮和酶活性变化加速了土壤氮转化和养分循环。建议在太湖沿岸防护林构建过程中,推广乔灌复层混交林。  相似文献   

11.
闽北3种人工林土壤游离氨基酸组成及其差异研究   总被引:1,自引:0,他引:1  
3种人工林土壤游离氨基酸总含量表现出明显的垂直分布特征.针阔叶混交林和针叶林表层(0~20 cm)土壤游离氨基酸含量显著高于深层(20~40 cm)土壤的含量(P<0.05);而阔叶林表层土壤游离氨基酸含量低于深层土壤的含量,但差异不显著.土壤游离氨基酸各组分均表现出显著的垂直分布特征,阔叶林表层土壤中天冬氨酸、谷氨酸、组氨酸、精氨酸和苯丙氨酸的含量显著高于深层土壤对应组分的含量,但苏氨酸、脯氨酸、甘氨酸、丙氨酸、亮氨酸显著低于深层土壤对应组分的含量;针阔叶混交林表层土 壤中酪氨酸、组氨酸和脯氨酸低于深层土壤的含量,而其余组分均显著高于深层土壤的含量;而针叶林中除甲硫氨酸和赖氨酸外,其余15种氨基酸在表层土壤中的含量均高于深层土壤中对应组分的含量.3种人工林中无论是表层土壤还是深层土壤,游离氨基酸均以中性氨基酸含量为最高,碱性和酸性氨基酸含量次之,含硫氨基酸含量最低.表层土壤中天冬氨酸、丝氨酸、谷氨酸、甘氨酸、丙氨酸、缬草氨酸、甲硫氨酸、异亮氨酸、亮氨酸和精氨酸的含量依次为:针叶林<阔叶林<针阔叶混交林,而赖氨酸和脯氨酸的含量则以针叶林为最高,针阔叶混交林次之,阔叶林最低;阔叶林表层土壤中络氨酸和胱氨酸含量最高.深层土壤中各组分氨基酸除赖氨酸之外均以针叶林中含量最低,针阔叶混交林次之,而阔叶林中含量最高.  相似文献   

12.
武夷山不同海拔植被土壤细根比根长季节动态   总被引:1,自引:0,他引:1  
对位于中亚热带的武夷山不同海拔植被土壤的细根生物量及长度进行了测定,分析了细根比根长的垂直分布及季节动态。结果表明:(1)在0~10 cm和10~25 cm土层,活细根比根长都是高山草甸>矮林>针叶林>常绿阔叶林(p<0.01);(2)常绿阔叶林、针叶林0~10 cm土层内活细根比根长高于10~25 cm土层内活细根比根长,矮林、高山草甸却是在10~25 cm土层内活细根比根长较高。各林分活细根比根长和死细根比根长在两土层间都无显著差异;(3)4种林分两土层内活细根比根长和死细根比根长都表现出一定的季节变化动态,但是季节间均无显著性差异。  相似文献   

13.
鼎湖山不同演替阶段的森林土壤水分动态   总被引:6,自引:0,他引:6  
运用中子水分仪监测了鼎湖山土壤水分数据,分析了鼎湖山不同演替阶段林地的土壤水分动态及其特征,探讨了温室效应对自然群落演替下土壤水分的影响.研究表明,鼎湖山不同林型林地土壤水分变化具有明显的差异,但它们的总体变化规律基本一致,即季风林、混交林、针叶林同一土层土壤储水量具有相似的变化趋势,从地表往下,土壤各层储水量呈下降趋势.随着森林的演替,林地土壤持水能力增强,且逐渐集中分布在根系比较密集的土壤上层.从各土层间的相关性来看,季风林最强,其次为针叶林,混交林最小.根据各季节土壤储水量变化的特点,鼎湖山土壤水分变化的季节动态大致分为3个阶段:土壤水分亏损期(1-3月)、补偿期(4-9月)和相对稳定期(10-12月).  相似文献   

14.
森林冠层对降雨的截留和再分配是生态水文学的重要研究内容.截留过程因降雨特征、森林类型及立地环境存在差异.以三峡库区山地的暖性针叶林、落叶阔叶林和针阔叶混交林三种林型为研究对象,对比了2018年植物生长季(4—11月)56场降雨的再分配特征及影响因素.结果表明:1) 降雨在三种林型的再分配特征具有明显差异.暖性针叶林的透流量、树干径流量、林冠截留量分别占同期林外降雨的62.0%、7.2%、30.8%;落叶阔叶林分别占77.9%、3.5%、18.6%;针阔混交林分别占73.3%、2.7%、24%. 2) 再分配参数与降雨量的相关分析显示,三种林型下树干茎流量、透流量均与降雨量呈线性正相关关系,冠层截留量与降雨量呈幂函数关系. 3) 场次降雨特征也会影响再分配,大雨和暴雨时三种林型内降水再分配的动态过程存在明显差异.三种林型的降雨再分配过程因受降雨量、降雨强度等降雨特征和林冠结构的影响而产生差异.针阔叶混交林在强降雨条件下能够更有效地减缓降雨对地表土壤的强烈冲击,减少水土流失.  相似文献   

15.
【目的】揭示地形因子对亚热带针阔混交林树种多样性的影响,为森林可持续经营管理奠定技术基础。【方法】基于浙江省2009年国家森林资源清查(NFI)数据,选择树种组成多样性指数(ISCD)、Margalef指数、Simpson指数、Shannon-Wiener指数、Alatalo均匀度指数、Pielou均匀度指数为树种多样性指标,通过分析各多样性指数在海拔、坡度、坡向、坡位等4个地形因子不同梯度间的变化,并对其进行差异性检验,解译地形因子对树种多样性的影响情况。【结果】ISCD、Simpson指数、Shannon-Wiener指数以及Pielou均匀度指数在海拔梯度间存在显著差异,ISCD、Simpson指数以及Shannon-Wiener指数在坡度梯度间存在显著差异,树种多样性指数值在不同坡向间没有显著差异性,Margalef指数与Alatalo均匀度指数在不同坡位间存在显著差异。【结论】亚热带针阔混交林多样性水平较高。海拔和坡度对树种多样性有明显的综合影响效应,对树种数量和分布均匀性影响不大;坡向对针阔混交林的树种数量、分布均匀性及其综合效应均没有明显的影响;坡位影响树种分布的数量、分布均匀度,但对树种多样性的综合效应影响不明显。  相似文献   

16.
凤阳山主要林分类型土壤团聚体及其稳定性研究   总被引:2,自引:0,他引:2  
【目的】探究凤阳山自然保护区的林地土壤团聚体组成及其影响因素,为恢复与保护土壤资源提供一定的理论依据。【方法】以浙江省凤阳山自然保护区内海拔1 300~1 400 m范围内主要林分类型(阔叶混交林、针阔混交林、杉木林、竹林)林地为对象,测定不同土层土壤基本理化性质和水稳定性团聚体粒径分布及其含量,分析土壤理化性质对土壤团聚体及其稳定性的影响。【结果】①4种林分土壤水稳定性大团聚体(WSA)(≥0.250 mm)含量均在90%以上。土壤水稳定性大团聚体含量及平均质量直径(MWD)和几何平均直径(GMD)均以杉木林的最大,竹林的最小。②通过非度量多维标度(NMDS)排序分析,阔叶混交林、针阔混交林和杉木林对≥2.000 mm粒级土壤团聚体影响较大,竹林对≥0.053~0.106 mm粒级的土壤团聚体的影响较大。③土壤密度与土壤MWD及GMD之间均呈显著正相关,与土壤分形维数(D)呈显著负相关。非毛管孔隙度与土壤MWD及GMD之间均呈显著负相关,与土壤D呈显著负相关。【结论】林分类型较土层深度对土壤团聚体粒级组成及稳定性的影响更显著,土壤密度及非毛管孔隙度等土壤理化性质较土壤总孔隙度、毛管孔隙度及总有机碳含量等对土壤团聚体粒级组成及稳定性的影响更显著。  相似文献   

17.
对内蒙古库布齐沙带东段油蒿(Artemisiaordosica)固定沙兵土壤微生物数量的垂直分布进行了研究.1)好气性细菌和真菌数量的垂直分布是结皮层(0-0.5cm)〉0.5-10cm〉30-40cm〉60-70cm,在0-10cm,油蒿固定沙丘与流动沙丘比值;好气性细菌数量为13.7:1,真菌数量为15.2:1;2)芽孢细菌和放线菌数量的垂直分布是0.5-10cm〉30-40cm〉结皮层(0-  相似文献   

18.
河南伏牛山区典型森林植被乔木层生物量研究   总被引:1,自引:0,他引:1  
选择伏牛山国家级自然保护区的五种典型植被类型作为研究对象,对15块临时样方内的乔木树种,分别测量出树高,胸径等因子,通过异速生长模型进行不同乔木树种生物量测定,进一步进行分析.结果表明,在选取的五种典型森林植被中,生物量大小依次为落叶针叶林落叶阔叶林针阔混交林常绿针叶林锐齿槲栎林.在落叶针叶林中,日本落叶松各个器官生物量在总的生物量所占比重从大到小依次为树干树根树枝树皮树叶.这一生物量分配格局既有利于日本落叶松的自身生长,也体现了对环境的适应性.在落叶针叶林、落叶阔叶林、针阔混交林、常绿针叶林、锐齿槲栎林中,乔木树种的地上生物量均大于地下生物量,尤其是对于落叶针叶林来说,地上生物量远远大于地下生物量.  相似文献   

19.
研究了黄岩长潭水库流域主要植被类型的结构、组成和分布.结果表明:该区域森林植被类型主要有针叶林、针阔叶混交林、常绿阔叶林、常绿落叶阔叶混交林、毛竹林、灌草丛和经济林,均为人工植被和次生植被,以暖性针叶林和针阔叶混交林为主体.植被种类组成和空间结构简单,枯枝落叶层较薄,对水土保持的作用较小.常绿阔叶林是长潭水库流域植被恢复的目标.建议用生态恢复的办法,用林分改造进行植被的恢复,引种地带性植被中的优势种、关键种,提高演替速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号