首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
人溶菌酶N端与Exendin-4嵌合蛋白的基因克隆及原核表达   总被引:2,自引:0,他引:2  
目的:克隆嵌合多肽人溶菌酶N端-Exendin-4基因并进行原核表达和纯化.方法:通过重组PCR技术将人溶菌酶N端74个氨基酸的基因序列与Exendin-4多肽基因序列相连接,其间引入一段由凝血酶和二肽基肽酶识别位点组成的连接序列.以嵌合基因hLYZ(N74)-Ex4与质粒pET-32a(+)构建原核表达体,转化大肠杆菌BL21(DE3)并诱导表达.表达蛋白经Ni-NTA亲和层析纯化、Western blotting鉴定;透析复性后,以肠激酶切割并回收目的多肽.结果:重组质粒pET-32a/hLYZ(N74)-Ex4构建正确,目的蛋白主要以包涵体形式存在,37℃诱导4h、IPTG浓度为0.6 mmol/L时表达量最高,约占菌体蛋白总量的30%.Western blotting检测显示重组蛋白为单一清晰条带.重组蛋白经肠激酶切割后,回收得到高纯度的嵌合多肽.结论:成功构建hLYZ(N74)-Ex4嵌合基因的原核表达质粒,高效原核表达并获得高纯度目的蛋白.  相似文献   

3.
4.
微丝骨架是细胞骨架的重要成员,在细胞的多项生理活动中发挥着重要作用.本论文利用荧光标记鬼笔环肽技术和GFP融合蛋白技术,对活体烟草BY-2悬浮细胞中微丝骨架的标记方法进行了探索,结果表明,10nmol/L的Alexa488-Phalloidin为细胞微丝骨架标记的最佳浓度,利用PCR等技术构建pPZP-NtFABD2-GFP植物表达载体后,转化烟草BY-2悬浮细胞,激光共聚焦扫描显微镜观察发现,NtFABD2-GFP融合蛋白能够清晰地显示活体烟草悬浮细胞内的微丝骨架.这些结果为进一步深入研究微丝骨架在活体植物细胞中的功能奠定了基础.  相似文献   

5.
Interferon treatment inhibits glycosylation of a viral protein   总被引:4,自引:0,他引:4  
  相似文献   

6.
利用生物信息学方法对紫花苜蓿MsDREBl进行了生物信息学分析.结果表明,该序列舍有AP2典型结构域,在N端存在核定位信号.为进一步验证该基因功能,构建MsDREBl与绿色荧光蛋白(GreenFluorescentProtein,GFP)基因融合的植物表达载体pCAMBIAl302-MsDREBl,再利用基因枪将其转入洋葱表皮细胞,在共聚焦扫描显微镜下观察MsDREBl基因表达产物在洋葱表皮细胞中的亚细胞定位.结果表明,MsDREBl基因表达产物定位于细胞核中,符合DREB家族转录因子特性.  相似文献   

7.
8.
Ure2 protein from Saccharomyces cerevisisae has a changeable structure similar to that ofrnammalian prion protein. Its N-terminal is the prion domain (PrD) consisting of 65 amino acids which plays a critical role in yeast prion development. In this study, PrD gene was recombinated with glutathione-S-transferase(GST) gene, and a soluble GST-PrD(sGST-PrD) fusion protein was expressed in E. coli. sGST-PrD could spontaneously polymerize into amyloid fibrils in vitro, displaying typical β-sheet-type structure; it had increased resistance to proteinase K and exhibited amvloid-like optical properties. Moreover, the aggregated GST-PrD(aGST-PrD) could induce sGST-PrD to aggregate into fibrils. These results indicate that PrD could change the conformation of GST moiety in a recombinant protein with PrD to form a prion-like chimeric protein, which proves that PrD has the ability to mediate a prion-like conversion of other proteins fused with it.  相似文献   

9.
根癌农杆菌介导的GFP在洋葱表皮细胞定位研究   总被引:6,自引:1,他引:5  
采用根癌农杆菌介导的方法,以受控于CaMV35S启动子的携带有GFP报告基因的双元植物表达载体pCAMBIA1300-35S-GFP转化洋葱表皮细胞.荧光显微镜下观察结果显示,GFP基因在经浸染和共培养后的洋葱表皮细胞中得到了表达,绿色荧光分布在细胞核和细胞质中,为进一步研究新基因的亚细胞定位和瞬时表达奠定了基础.  相似文献   

10.
Neurofilaments (NFs) and cytokeratins are both heteropolymers, which assemble into intermediate filaments (IFs) only when other proper IF subunit proteins are expressed simultaneously. To study the assembly property of NFs, we constructed two recombinant adenovirus which could express NF-L or NF-M, fused with green fluorescent protein (GFP) respectively. Then they were introduced into vero cells, and expressed fusion protein. Double labels of GFP fluorescence and immunofluorescence staining indicated that NF-L-GFP or GFP-NF-M not only coassembled with endogenous vimentins, but also coassembled with keratins into a cytoplasmic network of filaments.  相似文献   

11.
为了研究和开发丰富的麻疯树资源,本研究以四川省西昌市金沙江干热河谷地区的麻疯树种子为材料,将种子浸水萌发后收集各组织用于实验。qRT-PCR结果显示胚乳中Curcin、Curcin C基因表达先增加后减少,在子叶中Curcin C基因的表达也是如此。Western Blot结果显示Curcin蛋白在根、下胚轴、真叶、子叶中不表达,Curcin C蛋白在根和下胚轴中也不表达,而在真叶、子叶中表达。生物信息学软件预测及亚细胞定位结果都显示Curcin:GFP和Curcin C:GFP融合蛋白定位在细胞壁上。本研究初步阐明了两种麻疯树核糖体失活蛋白Curcin、Curcin C的表达模式并对其进行了亚细胞定位。  相似文献   

12.
Plants have evolved an extremely exquisite light signal regulatory network to adapt to the changing ambient light conditions, in which COP1 plays a critical role of the light signal transduction. Based on the cloned pea COP1 cDNA sequence and its protein structure, four individual gene fragments encoding different structural domains of the COP1 were designed to fuse to the GFP gene. The plant expression vectors containing these fusion genes as well as the COP1GFP fusion gene were constructed and used to transform tobacco by Agribacterium as confirmed by Southern analyses. Antibodies were raised against the recombinant GFP-COP1 overproduced in Escherichia coli. Immunoblotting results demonstrated that all of the fusion genes were constitutively expressed in transgenic tobacco plants. We systematically investigated the different subcellular localization of these fusion proteins and the resulting phenotypic characteristics of these transgenic plants under light and dark conditions. Our data show that (1) the molecular mass of the tobacco endogenous COP1 protein is 76 kD. It is constitutively expressed in all of the tested tissues and the total cellular content of COP1 protein is not noticeably affected by light conditions. (2) The nuclear localization signal of COP1 plays a critical role in regulation of its nuclear-cytoplasmic partitioning. The subcellular localization of the COP1 protein containing nuclear localization signal is regulated by light in the epidermal cells of leaves, but, it is located in nucleus constitutively in root cells. (3) The coiled-coil domain is very critical to the function of COP1 protein, while the zinc binding RING finger domain only plays a supportive role. (4) The WD-40 repeats domain is essential to the COP1 function, but this domain alone does not affect photomorphogenesis. (5) Overexpression of COP1 protein not only inhibits the photomorphogenesis of the stems and leaves of the transgenic tobacco, but also results in the generation of short and clustered roots. In contrast, overexpression of COP1 protein without WD-40 repeats domain promotes the photomorphogenesis process in the stems and leaves and lead to root elongation and lack of lateral roots. The COP1-COP1 interaction happens not only in the nucleus, but also in cytoplasm.  相似文献   

13.
Actins widely exist in eukaryotic cells and play important roles in many living activities. As there are many kinds of actin isoforms in plant cells,it is difficult to purifyeach actin isoform in sufficient quantities for analysing itsphysicochemical properties. In the present study, apea(pisum Sativum L.)actin isoform (PEAc1)fused to His-tag at its amino terminus and GFP(green fluorescent protein)atits Carboxyl terminus were expressed in E. coli in inclusionbodies. The fusion protein (PEAc1-GFP)was highly purifiedwith the yield of above 2 mg/L culture by dissolving inclu-sions in 8 mol/L urea,renaturing by dialysis in a gradient of urea,and affinity binding to Ni-resin. The purified mono-meric PEAc1-GFP could efficiently bind on DNase I andinhibit the latter抯 enzyme activity. PEAc1-GFP could po-lymerise into green fluorescent filamentous structures(F-PEAc1-GFP),which could be labelled byTRITC-phalloidin,a specific agent for observing microfila-ments. The PEAc1-GFP polymerlzation curve was identicalwith that of chicken skeletal muscle actin. The critical con-centration for PEAc1-Gfp to polymerise into filaments is 0.24 μmol/L.The F-PEAc1-GFP could stimulate myosinMg-ATPase activity in a protein concentration dependantmanner (about 4 folds at 1 mg/mL F-PEAc1-GFP). The re-sults above show that the PEAc1 fused to GFP retained theassembly characteristic of actin, indicating that gene fusion,prokaryotic expression, denaturation and renaturation,andaffinity chromatography is a useful strategy for obtainingplant actin isoform proteins in a large amount.  相似文献   

14.
重组Hepcidin融合蛋白的金属螯合亲和层析纯化   总被引:5,自引:0,他引:5  
在大肠杆菌中表达的重组Hepcidin融合蛋白以包涵体形式存在,其N端带有6个组氨酸。以Ni2+-IDA-Sepharose Fast Flow为层析介质,在变性条件下以不同的咪唑和pH值洗脱方式对Hepcidin融合蛋白的纯化效果进行了比较,确定了该融合蛋白的金属螯合层析纯化条件。以60mmol/L咪唑洗脱杂蛋白,然后将pH值降至4.0洗脱融合蛋白,纯化后的融合蛋白纯度大于95%,而且不含咪唑,有利于下一步Hepcidin的制备。金属螯合层析中融合蛋白收率不低于90%。Ni2+-IDA-Sepharose Fast Flow对该融合蛋白的吸附量为30.4mg /mL。  相似文献   

15.
生物过程由数百万个蛋白质驱动.蛋白质结构和蛋白质定位是蛋白质行使功能的关键.在过去的研究中,快速发展的荧光显微镜成像技术使研究人员可以直接观察蛋白质在活细胞内的定位.然而,对细胞质内高含量蛋白的活细胞观察仍然存在技术障碍.我们通过改进SunTag标记技术,使用差异定位的SunTag组件:一方面,在研究目的蛋白(POI)上标记多个V4抗原;另一方面,将识别V4抗原的抗体GCN4融合的绿色荧光蛋白(GCN4-GFP)通过差异定位后限制其与抗原的结合量.我们的方法大大降低了背景荧光信号,实现了对dynamin膜上功能单位的直接可视化.  相似文献   

16.
实验利用RT-PCR技术,在小麦矮苏3品种中克隆了1个编码泛素融合降解蛋白基因的cDNA,并且含有完整的5′端,将该基因命名为Tufd1,利用RACE技术克隆了该cDNA的3′端。根据这2段cDNA克隆,设计特异引物,利用RT-PCR扩增出了Tufd1完整的开放读码框(ORF),其编码区长948bp,编码315个氨基酸的多肽,在NCBI中运行BLAST。分析表明,Tufd1蛋白同拟南芥的UFD1蛋白有74%的同源性,在所编码的多肽链的N-端有UFD1保守结构域,可作为催化蛋白降解的信号。  相似文献   

17.
The N-end rule states that the half-life of a protein is determined by the nature of its amino-terminal residue. Eukaryotes and prokaryotes use N-terminal destabilizing residues as a signal to target proteins for degradation by the N-end rule pathway. In eukaryotes an E3 ligase, N-recognin, recognizes N-end rule substrates and mediates their ubiquitination and degradation by the proteasome. In Escherichia coli, N-end rule substrates are degraded by the AAA + chaperone ClpA in complex with the ClpP peptidase (ClpAP). Little is known of the molecular mechanism by which N-end rule substrates are initially selected for proteolysis. Here we report that the ClpAP-specific adaptor, ClpS, is essential for degradation of N-end rule substrates by ClpAP in bacteria. ClpS binds directly to N-terminal destabilizing residues through its substrate-binding site distal to the ClpS-ClpA interface, and targets these substrates to ClpAP for degradation. Degradation by the N-end rule pathway is more complex than anticipated and several other features are involved, including a net positive charge near the N terminus and an unstructured region between the N-terminal signal and the folded protein substrate. Through interaction with this signal, ClpS converts the ClpAP machine into a protease with exquisitely defined specificity, ideally suited to regulatory proteolysis.  相似文献   

18.
利用重叠延伸PCR技术克隆金属硫蛋白(MT)和绿色荧光蛋白(GFP)基因片段,并将两基因融合连接构建重组表达载体,采用氯化锂法转化毕赤酵母,获得工程菌株.荧光显微镜观察发现,工程菌在蓝光激发下发出绿色荧光,说明GFP基因被正确表达.在培养基中加入一定浓度的铜(1.0 mmol/L,1.5 mmol/L)、铬(150 μmol/L,200 μmol/L)、镉(120 μmol/L,140 μmol/L)、砷(40 μmol/L,60 μmol/L)化合物后,对照菌生长抑制,转基因菌株长势明显好于对照菌,表现出对金属离子的耐受性,说明工程菌过表达MT能够增强宿主对重金属离子的耐受性,提高菌株耐污能力,在微生物法净化重金属废水中具有一定优势.  相似文献   

19.
The ε subunit of the chloroplast ATP synthase and the truncated ε mutants which lack some amino acid residues from the N-terminus or C-terminus were overexpressed in E. coil When the ε subunit or the truncated ε proteins was added to the spinach chloroplast suspension, both the intensity of the fast phase of millisecond delayed light emission (ms-DLE) and the cyclic and noncyclic photophosphorylation activity of chloroplast were enhanced. With an increase in the number of residues deleted from the N-terminus, the enhancement effect of the N-terminal truncated proteins decreased gradually. For the C-terminal truncated proteins, the enhancement effect increased gradually with an increase in the number of residues deleted from the C-terminus. Besides, the ATP synthesis activity of ε-deficient membrane reconstituted with the ε subunit or the truncated ε proteins was compared. The ATP synthesis activity of reconstituted membrane with the N-terminal truncated proteins decreased gradually as the number of residues deleted from the N-terminus increased. For the C-terminal truncated proteins, the ATP synthesis activity of reconstituted membrane increased gradually with an increase in the number of residues deleted from the C-terminus, but was still lower than that of the wild type ε protein. These results suggested that: (a) the N-terminal domain of the ε subunit of the chloroplast ATP synthase could affect the ATP synthesis activity of ATP synthase by regulating the efficiency of blocking proton leakage of ε subunit; and (b) the C-terminal domain of the ε subunit of the chloroplast ATP synthase had a subtle function in modulating the ATP synthesis ability of ATP synthase.  相似文献   

20.
The gene of human thyrnosin alpha 1 (hT(1)was synthesised according to favorite eodons of Pichia pastoris by PCR. N-terminal 28 amino acid residues of 40S ribosomal protein (RP), S24Ethat is N-aeetylserine were replaced by hT( 1 for the constitution of hT(1-RP fusion gene in order to express acetyllated thyrnosin α1. And also, the Asn-Gly bond was designed to faeiliate isolation of the target protein. The fusion gene was cloned into the expression vector, pPIC/gK. The constructs were transformed into HIS4 mutant strain GS115 by eleetroporation. Both SDS-PAGE analysis and Western blot analysis indicated that the fusion protein was expressed successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号