首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Smith-Lemli-Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.  相似文献   

3.
Secondary palate formation is a complex process that is frequently disturbed in mammals, resulting in the birth defect cleft palate. Gene targeting has identified components of cytokine/growth factor signalling systems such as Tgf-alpha/Egfr, Eph receptors B2 and B3 (Ephb2 and Ephb3, respectively), Tgf-beta2, Tgf-beta3 and activin-betaA (ref. 3) as regulators of secondary palate development. Here we demonstrate that the mouse orphan receptor 'related to tyrosine kinases' (Ryk) is essential for normal development and morphogenesis of craniofacial structures including the secondary palate. Ryk belongs to a subclass of catalytically inactive, but otherwise distantly related, receptor protein tyrosine kinases (RTKs). Mice homozygous for a null allele of Ryk have a distinctive craniofacial appearance, shortened limbs and postnatal mortality due to feeding and respiratory complications associated with a complete cleft of the secondary palate. Consistent with cleft palate phenocopy in Ephb2/Ephb3-deficient mice and the role of a Drosophila melanogaster Ryk orthologue, Derailed, in the transduction of repulsive axon pathfinding cues, our biochemical data implicate Ryk in signalling mediated by Eph receptors and the cell-junction-associated Af-6 (also known as Afadin). Our findings highlight the importance of signal crosstalk between members of different RTK subfamilies.  相似文献   

4.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.  相似文献   

5.
6.
A new class of dominant dark skin (Dsk) mutations discovered in a screen of approximately 30,000 mice is caused by increased dermal melanin. We identified three of four such mutations as hypermorphic alleles of Gnaq and Gna11, which encode widely expressed Galphaq subunits, act in an additive and quantitative manner, and require Ednrb. Interactions between Gq and Kit receptor tyrosine kinase signaling can mediate coordinate or independent control of skin and hair color. Our results provide a mechanism that can explain several aspects of human pigmentary variation and show how polymorphism of essential proteins and signaling pathways can affect a single physiologic system.  相似文献   

7.
8.
Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet-undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in >10,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 x 10(-7) to 8 x 10(-22)). Together, these 12 loci account for approximately 2% of the population variation in height. Individuals with < or =8 height-increasing alleles and > or =16 height-increasing alleles differ in height by approximately 3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait.  相似文献   

9.
In addition to delivering a haploid genome to the egg, sperm have additional critical functions, including egg activation, origination of the zygote centrosome and delivery of paternal factors. Despite this, existing knowledge of the molecular basis of sperm form and function is limited. We used whole-sperm mass spectrometry to identify 381 proteins of the Drosophila melanogaster sperm proteome (DmSP). This approach identified mitochondrial, metabolic and cytoskeletal proteins, in addition to several new functional categories. We also observed nonrandom genomic clustering of sperm genes and underrepresentation on the X chromosome. Identification of widespread functional constraint on the proteome indicates that sexual selection has had a limited role in the overall evolution of D. melanogaster sperm. The relevance of the DmSP to the study of mammalian sperm function and fertilization mechanisms is demonstrated by the identification of substantial homology between the DmSP and proteins of the mouse axoneme accessory structure.  相似文献   

10.
The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.  相似文献   

11.
12.
13.
14.
Dysregulation of the TSC-mTOR pathway in human disease   总被引:26,自引:0,他引:26  
The mammalian target of rapamycin (mTOR) has a central role in the regulation of cell growth. mTOR receives input from multiple signaling pathways, including growth factors and nutrients, to stimulate protein synthesis by phosphorylating key translation regulators such as ribosomal S6 kinase and eukaryote initiation factor 4E binding protein 1. High levels of dysregulated mTOR activity are associated with several hamartoma syndromes, including tuberous sclerosis complex, the PTEN-related hamartoma syndromes and Peutz-Jeghers syndrome. These disorders are all caused by mutations in tumor-suppressor genes that negatively regulate mTOR. Here we discuss the emerging evidence for a functional relationship between the mTOR signaling pathway and several genetic diseases, and we present evidence supporting a model in which dysregulation of mTOR may be a common molecular basis, not only for hamartoma syndromes, but also for other cellular hypertrophic disorders.  相似文献   

15.
16.
MicroRNAs (miRNAs) are a class of short ( approximately 22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA expression patterns in mouse embryos. We elucidate the tissue-specific expression of several miRNAs during embryogenesis, including two encoded by genes embedded in homeobox (Hox) clusters, miR-10a and miR-196a. These two miRNAs are expressed in patterns that are markedly reminiscent of those of Hox genes. Furthermore, miR-196a negatively regulates Hoxb8, indicating that its restricted expression pattern probably reflects a role in the patterning function of the Hox complex.  相似文献   

17.
Multiple epiphyseal dysplasia (MED) is a relatively mild and clinically variable osteochondrodysplasia, primarily characterized by delayed and irregular ossification of the epiphyses and early-onset osteoarthritis. Mutations in the genes encoding cartilage oligomeric matrix protein (COMP) and type IX collagen (COL9A2 and COL9A3) have previously been shown to cause different forms of MED (refs. 4-13). These dominant forms of MED (EDM1-3) are caused by mutations in the genes encoding structural proteins of the cartilage extracellular matrix (ECM); these proteins interact with high affinity in vitro. A recessive form of MED (EDM4) has also been reported; it is caused by a mutation in the diastrophic dysplasia sulfate transporter gene (SLC26A). A genomewide screen of family with autosomal-dominant MED not linked to the EDM1-3 genes provides significant genetic evidence for a MED locus on the short arm of chromosome 2 (2p24-p23), and a search for candidate genes identified MATN3 (ref. 18), encoding matrilin-3, within the critical region. Matrilin-3 is an oligomeric protein that is present in the cartilage ECM. We have identified two different missense mutations in the exon encoding the von Willebrand factor A (vWFA) domain of matrilin-3 in two unrelated families with MED (EDM5). These are the first mutations to be identified in any of the genes encoding the matrilin family of proteins and confirm a role for matrilin-3 in the development and homeostasis of cartilage and bone.  相似文献   

18.
Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.  相似文献   

19.
We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.  相似文献   

20.
Chromatin profiling using targeted DNA adenine methyltransferase   总被引:17,自引:0,他引:17  
Chromatin is the highly complex structure consisting of DNA and hundreds of associated proteins. Most chromatin proteins exert their regulatory and structural functions by binding to specific chromosomal loci. Knowledge of the identity of these in vivo target loci is essential for the understanding of the functions and mechanisms of action of chromatin proteins. We report here large-scale mapping of in vivo binding sites of chromatin proteins, using a novel approach based on a combination of targeted DNA methylation and microarray technology. We show that three distinct chromatin proteins in Drosophila melanogaster cells each associate with specific sets of genes. HP1 binds predominantly to pericentric genes and transposable elements. GAGA factor associates with euchromatic genes that are enriched in (GA)n motifs. A Drosophila homolog of Saccharomyces cerevisiae Sir2p is associated with several active genes and is excluded from heterochromatin. High-resolution, genome-wide maps of target loci of chromatin proteins ('chromatin profiles') provide new insights into chromatin structure and gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号