首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Henstock积分的基础上,把在[a,b]上所有Henstock可积函数组成的空间称为Denjoy空间(简记为DH[a,b]空间),建立Denjoy积分有关的基本概念,给出DH[a,b]空间上的连续线性泛函的一种刻划,并在非绝对型Henstock积分与Riemann-Stieltjes积分之关系定理的基础上,对该连续线性泛函刻划给出一个简捷的证明.  相似文献   

2.
一个实函数F如果ACG*且F’(x)=f(x)在区间[a,b]上几乎处处成立,则f在[a,b]上Hens-tock可积,且F是f的积分原函数.相反结论也成立.而模糊Henstock积分原函数并不几乎处处可导的,因此在Vitali覆盖意义下讨论模糊强Henstock积分原函数显然是不可取的.把经典实分析理论用于模糊积分理论,利用已有的内部变差概念,给出模糊数值函数强Henstock积分的原函数的完全刻画定理.  相似文献   

3.
讨论了Banach-值函数f(x)在[a,b]上的Henstock-Pettis可积性问题.利用Pettis积分和Henstock积分的性质给出了f(x)可积的一个充分必要条件.  相似文献   

4.
本文给出Henstock积分可积与LSRS条件等价的一种不同于[2]的新的简短证明。并利用LSRS条件给出Henstock积分一个新的收敛定理。  相似文献   

5.
实函中证明了[a b]上的有界函数f(x)黎曼可积的充要条件是f(x)不连续点所成之集的勒贝格测度为零。关于黎曼——斯蒂阶积分也有类似定理:f(x)在[a,b]上有界,α(x)为[a,b]上的有界变差函数,则f(x)在[a,b]上关于a(x)黎曼——斯蒂阶可积的充要条件是α(x)在f(x)不连续点所成之集上的全变差为零。本文就是给出这个定理的一个证明。  相似文献   

6.
用初等的方法证明了[a,b]上的Riemann可积函数的连续点在[a,b]上是稠密的,并在应用上出了积分中值定理的简洁证明。  相似文献   

7.
<正> 众知,1902年在测度理论基础上建立了Lebesgue 积分,1957年建立了完全Riemann 型的Henstock 积分。文[1] 已论述了它们之间的关系。本文将进一步论及两个问题。第一,从测度论观点阐述H~-可积函数与可测函数类之间的关系,并给出简捷证明,该证明比文[2] 简单;第二,有着广泛应用的Henstock 积分的收敛理论至今还不甚完善,本人着  相似文献   

8.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

9.
讨论有界函数是否在有限闭区间上(常义)黎曼可积时,文献[1]的可积准则为“,即文献[2]的可积准则为某个分割T,使得由于所用可积准则不同,在证明下述两个基本定理:定理1若函数f(x)在闭区间[a,b]有界,且有有限个间断点,则函数f(x)在[a,b]可积.定理2若函数f(x)在区间[a,c]与[c,b]可积,则函数f(x)在[a,b]也可积.时所采用的证明方法也就不同,而文献[2]的证明显得简单明了.本文不同于文献[2]的方法,将介绍一个振幅和不等式在证明函数黎曼可积方面的应用(下文所用符号的含义及可积准则与[1]相同).一个振幅和不等式…  相似文献   

10.
本文把中值定理中,函数在闭区间[a,b]上连续的条件减弱为在闭区间[a,b]上可积,在开区间(a,b)有介值性,证明定理同样成立.  相似文献   

11.
若函数f是定义在[a,b]上的抽象函数,{Ei}是[a,b]中互不相交的闭集列,如果这些Ei的并是[a,b],并且f在每个Ei上McShane可积,则在一定条件下,f在[a,b]上Henstock可积.  相似文献   

12.
众所周知,1957年建立了完全Riemann型的Henstcck积分,它把Lebesgue积分推广为非绝对型的。文[8]证明了该积分的若干性质,文[9]直接证明了Henstock积分与Denjoy积分(特殊的)的等价性。本文着手对积分学重要而基本的理论——收敛理论进一步探讨,推广Lebesgue积分的控制收敛定理,给出Henstock型的支配收敛定理的简捷  相似文献   

13.
<正> 1. 引言和定义Kurzweil[4] 和Henstock[1] 为Denjoy 积分[9] 独立地下了一个Riemann型定义。这种理论由Henstock 和其他学者所发展,包括新近的Henstock[3] 、Pfeffer[9] 以及Lewis 和Shisha[6] 的一些论文。本文将证明Henstock 积分的一个收敛定理。  相似文献   

14.
本文给出并论证了积分中值定理中的ξ,当 b→a~+时,将趋于(a,b)的中点,即·第一,二积分中值定理中的ξ分别有积分中值定理若函数 f(x)在区间[a,b]上连续,则在[a,b]上至少存在一点ξ,使得  相似文献   

15.
(一)众所周知,积分第一中值定理是下面的定理若函数f(x)在闭区间[a,b]上连续,函数g(x)在[a,b]上可积,且不变号,则在[a,b]上至少存在一点ζ,使得(?)注意,上述定理中的ζ∈[a,b],文[1]在不改变其条件的情况下,将结论加强为ζ∈(a,b),这种  相似文献   

16.
关于定义在实区间[a,b]上,而在实 Banach 空间 E 内取值的抽象函数积分的Newton—Leibniz 公式,定光桂在[1]中证明了如下定理:设 x(s)是实区间[a,b]上有 R—可积的弱导数 x′(s),则有:ingegral from a to b x′(s)ds=x(b)-x(a)本文的目的在于:得出两个有关抽象函数积分的 Newton—Leibniz 公式的定理;从  相似文献   

17.
本文指出Riemann积分与Lebesgue积分的本质区别在于空间的完备性上。区间(a,b)上所有Riemann可积函数所生成的空间R[a,b]是不完备的;而所有Lebesgue可积函数所生成的空间L[a,b]是完备的。  相似文献   

18.
积分中值定理的推广   总被引:7,自引:0,他引:7  
将Riemann积分中值定理中函数f(x)所满足的条件加以改进,得到如下积分中值定理:若函数f(x)是闭区间[α,b]上有原函数的可积函数,函数g(x)在[α,b]上可积且不变号,则存在ζ∈(α,b),使得∫α^b(x)g(x)dx=f(ζ)∫α^bg(x)dx。√a。a  相似文献   

19.
给出了两种简单的证明方法。一般教科书都将积分第一中值定理叙述为:设在[a,b]上,f(x)连续,g(x)可积且不变号,则有  相似文献   

20.
这文章证明了如下的积分基本定理: 假定f(x)是定义在区间[a,b]上的实函数,同时, (ⅰ) 它的右上导数D~+f(x)>-∝,右下导数D_+f(x)<∝,在(a,b)上至多除掉一个可列集Γ以外处处成立, (ⅱ) f(x)在(a,b]上处处在半连续, (ⅲ) 对所有的x∈Γ成立, (ⅳ) 存在一个L可测的实函数ψ(x),使D~+f(x)≥ψ(x)≥D_+f(x)在[a,b)上几乎处处成立,而且max{ψ(x),0}(或min(ψ(x),0})在[a,b]上可积,那末ψ(x)在[a,b]上可积;而且 这里,有关的积分概念可以是Lebesgue的,也可以是Perron的。定理关于ψ(x)这种函数可积分的判断有它独立的意义。证明中吸收了I.S.Gal的方法,同时弥补了原作者忽略的部份。 文章最后举例说明定理的几个条件的相互独立性和对于定理的成立的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号