首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 158 毫秒
1.
针对航天器姿态机动的控制问题,设计了一种滑模变结构控制器,实现了航天器姿态对时变期望的跟踪。给出航天器姿态的数学描述,采用滑模控制思想设计了控制器,并基于Lyapunov稳定性理论给出控制器的稳定性证明。以推力器为姿态机动的执行机构,给出了控制信号的PWM调制方法。最后在Simulink环境下构建了仿真系统,仿真结果表明在该控制器下,航天器姿态可以实现对期望信号的跟踪。  相似文献   

2.
针对航天器大角度姿态机动过程中的严重非线性、航天器惯量的不确定性及外界干扰,提出了自适应滑模控制律.利用修正罗德里格参数建立航天器的数学模型,能克服欧拉角的奇异性和四元数约束条件的限制.选择一类滑模面,基于Lyapunov函数方法推导出控制律和自适应律,使控制律完全独立于对象的参数.理论分析及仿真结果表明,该控制律对航天器惯量不确定性和外界干扰有较强的鲁棒性,并且是全局渐近稳定的.  相似文献   

3.
基于动态输出反馈的挠性航天器主动振动抑制   总被引:3,自引:2,他引:1  
针对航天器三轴同时姿态机动时挠性附件的振动抑制问题,提出了基于动态输出反馈控制的主动振动抑制方法。采用拉格朗日方法和四元数参数化建立了挠性航天器的非线性模型。利用航天器姿态控制问题固有的无源性,设计了1种仅利用姿态四元数而无需以角速度测量、挠性变形位移及速率测量作为反馈的动态控制规律,并采用压电作动器来抑制挠性结构的振动。基于Lyapunov方法证明了所设计的动态控制器保证了姿态的渐近稳定和模态的振动的衰减。仿真结果表明了所提出的控制方法的可行性和有效性。  相似文献   

4.
论文第一次系统地研究并给出了适用于多种姿态参数的相对姿态运动学方程和相对动力学方程,所得结果为发展虚拟平台、相对导航和编队飞行提供了理论基础.论文中还给出了相对姿态运动学方程和相对动力学方程在航天器大角度机动控制问题中的应用,及相应的渐进稳定非线性姿态控制器设计.与其他文献仅用位置反馈来实现姿态机动的跟踪问题相比,本文用状态反馈,不仅实现了姿态机动跟踪控制,还得到了满意的跟踪过程动态品质.这对实现分布卫星具有平稳跟踪品质的相对指向控制,具有重要意义.  相似文献   

5.
为抑制航天器姿态机动过程中挠性附件的振动,提出了一种基于路径规划和反推技术的姿态自适应控制方案.对航天器姿态机动路径进行规划,以缓解传统控制中快速性和超调量之间的矛盾,并减小姿态机动引起的挠性附件振动.针对航天器姿态动力学和运动学构成的具有不确定性的非线性串级系统,基于反推技术设计了一种仅利用输出信息的自适应控制器,并...  相似文献   

6.
针对存在不确定惯量和空间环境干扰的挠性航天器姿态大角度快速机动控制问题,提出了一种受细胞膜放电模型启发的自适应鲁棒姿态控制器设计方法.首先,为了快速完成姿态机动任务,并尽可能少激发挠性帆板振动,在挠性航天器运动学和动力学分析的基础上,提出了基于预先规划姿态运动轨迹且对不确定惯量具有自适应能力的自适应鲁棒控制器.在此基础上,为了改善机动过程中姿态跳变使系统指向精度和稳定度变差的问题,基于细胞膜放电的动力学模型设计了一种改进型自适应鲁棒控制器.所提出的控制器能够保证闭环系统渐进稳定;当惯量估计误差有界时,对于任意初始跟踪误差,该控制器可以保证姿态跟踪误差一致终值有界.仿真结果表明了所提出的改进型自适应鲁棒控制器的有效性.  相似文献   

7.
挠性航天器大角度姿态机动路径规划   总被引:2,自引:0,他引:2  
针对挠性航天器大角度姿态快速机动快速稳定的控制要求,通过分析挠性航天器姿态动力学特性,提出了一种基于抛物线型角加速度曲线的三段式机动路径规划算法.该算法考虑了机动过程中对最大角加速度与最大角速度限制,充分发挥执行机构的功能来提高系统的快速性,并使角加速度平滑变化以减小帆板的振动.该路径规划方法简单,适于在轨实现.仿真结...  相似文献   

8.
双刚体航天器系统在无外力矩作用时,其姿态运动可通过连接双刚体航天器的关节铰进行控制,这种关节铰可由球铰或万向节铰构成.本文利用系统相对于总质心的动量矩守恒这一特性研究了双刚体航天器的三维姿态运动控制问题.分别导出带球铰和万向节铰连接的双刚体航天器系统三维姿态运动控制模型,并将系统的姿态运动控制问题转化为无漂移系统的运动规划问题.利用最优控制和样条逼近方法,在控制输入的样条逼近中引入粒子群算法,提出基于样条逼近的最优运动规划数值算法.运动规划的最优控制是光滑的,且初值和终值均为零,通过数值仿真,表明该方法对带球铰和万向节铰连接的双刚体航天器三维姿态运动规划是有效的.  相似文献   

9.
针对大角度姿态快速机动的航天器姿态控制器进行参数优化设计.采用四元数方法描述航天器的姿态运动,针对一类基于Lyapunov方法设计的姿态控制器,设计了描述控制器全局姿态调整能力的指标,量化了控制器参数对控制性能的影响,采用粒子群算法对控制器参数选择进行优化,避免了传统设计中基于经验选择设计参数,通过引入粒子间信息共享的机制求解优化问题.仿真结果表明:粒子群算法采用简洁的位置和速度更新实现系统寻优,在有输出力矩约束的条件下,进入最优解67 s所需的进化代数为31,可较快收敛到系统全局最优解.  相似文献   

10.
提出了压缩映射-参数微扰方法应用于控制受地球磁场和万有引力场共同作用,具有结构内阻尼的磁性刚体航天器在接近地球赤道面的圆轨道上的混沌姿态运动.利用压缩映射和线性逼近产生一个参数微扰反馈序列,使混沌轨道稳定在嵌入混沌吸引子内的一个不稳定周期轨道上,实现将混沌运动转化为周期运动.混沌吸引子中不稳定周期不动点以及雅可比矩阵的近似计算利用了闭回路对的观测信息.压缩常数可在(-1,1)内灵活选取,给出了保证最优控制过程的压缩常数.数值计算结果证实了此方法在控制复杂力场中航天器混沌姿态运动的有效性.  相似文献   

11.
灵敏航天器快速倾斜机动的MCMG参数和力矩估算   总被引:2,自引:0,他引:2  
该文研究灵敏航天器快速倾斜机动时微型控制力矩陀螺(MCMG)的参数估算问题。所得到的估算结果可供微型控制力矩陀螺群初步设计时选择设计参数。从航天器的动力学模型出发,给出了倾斜机动模式下MCMG最大框架角速度和输出力矩的估算方法。然后在给定机动任务的前提下,以某小卫星为例,对采用标准金字塔构型的微型控制力矩陀螺群的姿态控制系统进行了仿真验证。仿真结果显示出该估算方法的可行性。  相似文献   

12.
充液航天器中的液体燃料晃动将可能导致航天器姿态不稳定性现象的发生.本文采用哈密顿动力学方法研究了半充液航天器姿态运动的稳定性问题.首先将晃动液体等效为弹簧质量块力学模型,建立了液体晃动与航天器姿态多体耦合动力学系统的哈密顿方程,并进一步推导了与耦合动力学系统相关的Casimir函数;借助于Casimir函数并采用李亚普诺夫稳定性理论推导出耦合系统的稳定性和非稳定性条件,最后给出了数值仿真结果及相关结论.  相似文献   

13.
针对一类非线性网络控制系统,提出了一种新型自适应模糊滑模预测控制方法,采用带有时间超前非线性状态预估器的新型的滑模控制(SMC)方案,补偿网络诱导时延,而后利用模糊自适应系统来逼近非线性环节,并基于Lyapunov稳定性理论设计自适应律,保证系统的稳定性. 以网络环境下空间飞行器的姿态控制为例进行仿真,结果表明,所提出的方法不仅实现了高精度的姿态稳定控制,且系统对不确定参数、网络诱导延时及外界干扰带来的影响具有很好的鲁棒性.  相似文献   

14.
对自旋弹头实现末端机动的变质心控制系统进行了研究.为了明确表示自旋弹头的运动参数与质量块运动参数之间的关系,采用牛顿力学方法建立自旋弹头的姿态运动模型.模型包括质量块运动方程、姿态运动的运动学方程和动力学方程.考虑到俯仰和偏航通道的动力学特性为非线性的、铰链耦合的,采用自适应滑模控制方法设计了变质心控制系统,对系统中的不确定项进行估计和补偿,保证系统的跟踪误差收敛到零.变质心控制系统通过对质量块的偏移运动进行控制,进而准确地控制自旋弹头的姿态运动.为了检验所设计的变质心控制系统的控制性能,利用MATLAB/Simulink软件构建系统的仿真模型,进行仿真研究.仿真结果表明:所设计的变质心控制系统具有较高的快速性和控制精度,实现了对自旋弹头姿态角的准确控制.  相似文献   

15.
研究在具有内阻尼的磁性刚体航天器在椭圆轨道上平面天平动的混沌及其控制.建立了系统的动力学方程、应用Melnikov方法建立了系统存在横截异宿环的条件.分别采用Poincare映射和Lyapunov指对系统混沌运动进行识别,采用输出变量反馈线性化控制律及其局部线性化将混沌姿态运动控制为给定的静止状态和周期运动。  相似文献   

16.
卫星编队飞行的轨道和姿态GPS自主同步反馈控制   总被引:1,自引:0,他引:1  
鉴于编队飞行之中卫星不但对轨道有要求,而且对姿态也有要求,例如有的编队飞行卫星在惯性空间中有指向控制的要求,或者相互之间有保持一定的姿态关系的要求,同时在轨道控制过程中也需要姿态信息,因此在编队飞行的建立过程中,需要考虑姿态和轨道的协调控制和同步控制问题.本文提出了用汗同步控制的相对轨道和相对姿态运动学和动力学模型、控制率的选择和设计以及用GPS的伪距和载波相位实现轨道和姿态同步实时反馈控制方法.其中包括用修改的Kodrigues参数实现无奇异的大姿态机动的非线性状态跟踪控制.对EO-1/Landsat 7编队飞行的同步控制进行了数字仿真,证实了设计的正确性和实现的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号