首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
通过分析发动机起动点火、喷油及进气量控制策略,确定了发动机冷起动过程中影响HC和NOx排放的关键参数为:拖转转速、起始喷油转速和点火推迟.研究表明:较高的拖转转速可以减少发动机起动所需的燃油量、改善燃油雾化质量、促进完全燃烧、降低HC排放;而过高的拖转转速则会恶化NOx排放;推迟点火可以有效地加速催化器起燃、显著地降低排放,若点火太迟只能有限加速催化器起燃,而且会增加油耗、使燃烧不稳定、增加失火,HC及NOx排放同时恶化.通过研究排放规律,选定了合适的冷起动参数,为今后精确排放标定奠定了基础.  相似文献   

2.
航空发动机的成功起动是其顺利进入正常工作状态的前提。为研究某小型大涵道比涡扇发动机在不同环境条件下的起动特性,在获得该发动机部件高转速特性的基础上,发展各部件的低转速起动特性,建立了小型大涵道比涡扇发动机起动数学模型。然后利用起动数学模型编写相应的程序进行数值模拟,并将模拟结果与试验台数据进行对比,结果表明所建立起动模型能较为准确的模拟小型大涵道比涡扇发动机的起动过程。最后,利用已建立的起动模型研究了小型大涵道比涡扇发动机起动特性的影响因素。  相似文献   

3.
涡扇发动机高原和高、低温起动的可靠性问题是航空领域需要进一步研究的难题.以理想起动过程的假设为前提,从新的角度研究了起动控制规律设计时应考虑的原则.利用流动相似理论分析和定义了起动过程的各相似参数,提出了新的发动机点火转速和起动机脱开转速的确定原则,并给出了起动过程供油规律的闭环控制方案.所做工作对于深入开展起动优化控制研究具有重要意义.  相似文献   

4.
提出了一种涡扇发动机地面起动供油规律的设计方法,通过引入转速上升速率作为控制参数,设计转速上升速率给定控制规律,采用闭环控制适应性调整起动供油量,在很大程度上降低起动过程对供油精度的敏感度,并应用于某型航空涡扇发动机地面起动,取得了良好的验证效果。  相似文献   

5.
本文提出了一种涡扇发动机地面起动供油规律的设计方法。通过引入转速上升速率作为控制参数,设计转速上升速率给定控制规律,采用闭环控制适应性调整起动供油量,在很大程度上降低起动过程对供油精度的敏感度,并应用于某型航空涡扇发动机地面起动,取得了良好的验证效果。  相似文献   

6.
本文就航空燃气涡轮发动机的起动过程进行了介绍,分析了起动过程的控制方程,同时,详细分析了起动过程中一些可能的影响因素。  相似文献   

7.
为了进一步提高飞行器的变轨稳定性,研究高床载单组元肼发动机的冷起动特性,采用模块化建模思想通过管路输送系统、推力装置等功能模块的数学模型,基于Mworks软件构建了基于冷起动延迟的单组元肼发动机仿真系统,并采用实验数据对冷起动过程压力特性进行有效性验证。在保证发动机的稳态室压和冷起动加速性的情况下,分析了对高床载单组元发动机冷起动压力峰的影响因素,得到其关于毛细管长度、限流圈孔径等结构参数的关系。结果表明:贮箱压力的变化对冷起动过程的影响较小;增加毛细管长度会显著降低发动机的冷起动加速性;选取合适的限流圈孔径来减小瞬时流量是抑制冷起动压力峰较为合理有效的方式。  相似文献   

8.
研究了三相异步电动机直接起动、定子串电阻起动以及软起动三种起动方式的工作原理,从理论上分析了它们各自起动电流和转速的工作特性,接着在MATLAB/SIMULINK中对这三种起动方式进行了建模与仿真.最后通过对仿真结果的比较分析可知,相比较直接起动和定子串电阻起动方式,软起动能够明显减小起动电流,而且在转速方面,软起动使转速变化更加平缓.  相似文献   

9.
为提高涡轴发动机起动点火可靠性,对影响发动机起动点火时机、地面和空中起动点火成功的因素开展了分析研究;通过瞬时增大点火供油改善燃油雾化效果,在基于油气比点火供油的基础上,采用进口环境条件和燃油温度对起动点火进行修正;以点火时间为函数,采用步进式供油控制,逐步增大起动点火的供油量,增强发动机全包线起动点火的成功率.开展了发动机试验验证,试验结果表明:该技术可有效提高发动机包线内起动点火的可靠性和成功率.  相似文献   

10.
汽车发动机起动过程的动力学仿真   总被引:8,自引:0,他引:8  
发动机怠速自动起停是混合动力汽车的重要工作模式,它能避免发动机在怠速下运行,有效减少燃油消耗、尾气排放和发动机磨损.对混合动力汽车起步时发动机起动动力学进行了系统研究,基于发动机起动过程的阻力特性的建模与仿真,提出了ISG电机驱动控制策略,建立了ISG电机-发动机的综合控制模型,进行了发动机起动过程中的动力学仿真.仿真结果表明,所采用的ISG电机满足快速起动发动机的时间要求.  相似文献   

11.
CVT起步离合器模糊控制算法研究   总被引:3,自引:1,他引:3  
探讨了汽车无级变速器控制的关键技术之一———汽车起步离合器的控制技术,并针对汽车起步时条件的多样性以及驾驶员意图的不确定性,研究了适用于复杂条件的模糊控制算法.在离合器的滑磨阶段,把动态跟踪发动机转速的油压作为控制目标,离合器结合的控制便转化为一闭环控制.结果表明汽车能在任意工况下平顺快速起步.因此,本研究为控制CVT(Continuously Variable Transmission)起步离合器这种时变、非线性系统提出了一种简单可行的解决方法.  相似文献   

12.
电控机械式自动变速系统开发及试验   总被引:4,自引:0,他引:4  
分析了影响电控机械式自动变速车辆起步、换档品质的主要因素.以长安之星微型汽车为载体,开发了电控液压式机械自动变速系统,制定了综合换档控制策略和离合器接合控制策略,并对影响离合器接合规律的相关因素进行补偿.提出了车辆起步、换档过程中发动机转速控制目标,采用电子节气门进行发动机转速控制,实现了起步、换档时对发动机转速的自动控制.进行了不同工况条件下样车起步、换档试验,试验结果表明所开发的自动变速系统具备了较为满意的控制效果.  相似文献   

13.
为了进一步建立准确的车辆起步过程的车辆模型,该文对车辆动力学模型及起步过程仿真进行了研究。该文使用面向对象的模块化建模方法,利用物理系统建模软件MATLAB/SimDriveline将车辆动力传动系统分解为各自独立的具有完整物理意义的子模块。在此基础上建立了发动机、液力变矩器、换挡离合器、地面行驶阻力等子模块数学模型和车辆整车动力学模型,对模型的一档起步过程进行仿真分析。最后得到了一档起步过程中发动机转速、输出转矩和变速箱输出转矩的仿真数据。研究结果表明仿真分析结果与实验结果基本一致,该车辆动力学模型是准确的。  相似文献   

14.
针对单电机插电式混合动力汽车在纯电动行进间电动机启动发动机时由于系统输出转矩变化进而引起整车冲击的问题,分析得到发动机点火时刻的不同及离合器接合状态的不同是造成转矩波动的原因。在此基础上,提出了基于离合器主、从动盘转速差和电机角加速度为输入量的离合器压力模糊控制的混合动力汽车模式切换动态协调控制策略,并对比了发动机目标转速点火和怠速转速点火的控制效果。最后通过台架试验以及实车道路试验对提出的控制策略进行了验证。结果表明,基于目标转速点火的协调控制策略能减小整车的冲击度。  相似文献   

15.
基于所研制的单活塞式液压自由活塞柴油机原理样机,对冷启动过程中的循环波动进行了试验研究.研究结果表明,约150循环后发动机完成冷启动过程,进入稳定工作状态.冷启动过程中,随着工作循环数的不断增加,下止点位置、反弹量和停留位置的波动逐渐减小;气缸内最大燃烧压力值逐渐减小;压升率极值波动较大并大于临界值.稳定运转后,最大压升率波动减小并趋于稳定;燃烧放热率峰值随工作循环数的增加有所降低,速燃期持续时间没有明显变化;缓燃期和后燃期持续时间逐渐增加;燃烧过程逐渐趋于稳定.  相似文献   

16.
基于试车数据的航空发动机起动过程建模   总被引:1,自引:0,他引:1       下载免费PDF全文
根据某型航空涡轴发动机起动过程工作原理,结合该型发动机试车数据,采用转子动力学特性与数值模拟相融合的方法,创新地提出了一种估算起动过程稳态燃油流量的算法,基于该算法提出并建立了航空涡轴发动机起动过程数学模型,编制了相应的计算程序,并与该型发动机的试车数据进行了对比分析。结果表明,所建立的该型航空涡轴发动机起动过程数学模型所给出的数值计算结果与试车数据具有较好的一致性,该航空涡轴发动机起动过程数学建模方法具有一定的通用性。  相似文献   

17.
在轮毂直驱式电动车传动系中引入离合器,本文提出一种电机与车身负载起动过程分离的起步模式。不受普通汽车固定怠速的限制,轮驱电机具有良好的无级变速特性,可根据路况与载荷需求,动态调整离合器切入负载转速,实现无堵转的电机带载起步过程。本文首先对驱动电机,离合器和车身负载组成的传动系进行建模,进而讨论了影响起动电流和驾乘舒适感的因素。相应地,对紧固连接方式下直接起步和柔性连接方式下离合起步进行仿真与实验,结果表明电动车用离合起步模式的有效性和缓释起步过程中的电磁和机械冲击方面的积极作用。  相似文献   

18.
电控机械自动变速车辆发动机转速控制   总被引:2,自引:0,他引:2  
分析了AMT车辆发动机控制方式和特点,提出了AMT车辆起步和换档过程发动机转速控制目标;对机械式节气门发动机通过加装电子节气门实现了发动机转速自动控制的要求;建立了发动机转速模糊控制器,并应用于所开发的AMT控制系统.台架试验结果表明改装的电子节气门控制性能良好,所建立的模糊控制器能够较好满足AMT车辆发动机转速控制的需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号