首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
提出了一种涡扇发动机地面起动供油规律的设计方法,通过引入转速上升速率作为控制参数,设计转速上升速率给定控制规律,采用闭环控制适应性调整起动供油量,在很大程度上降低起动过程对供油精度的敏感度,并应用于某型航空涡扇发动机地面起动,取得了良好的验证效果。  相似文献   

2.
涡扇发动机高原和高、低温起动的可靠性问题是航空领域需要进一步研究的难题.以理想起动过程的假设为前提,从新的角度研究了起动控制规律设计时应考虑的原则.利用流动相似理论分析和定义了起动过程的各相似参数,提出了新的发动机点火转速和起动机脱开转速的确定原则,并给出了起动过程供油规律的闭环控制方案.所做工作对于深入开展起动优化控制研究具有重要意义.  相似文献   

3.
航空发动机的成功起动是其顺利进入正常工作状态的前提。为研究某小型大涵道比涡扇发动机在不同环境条件下的起动特性,在获得该发动机部件高转速特性的基础上,发展各部件的低转速起动特性,建立了小型大涵道比涡扇发动机起动数学模型。然后利用起动数学模型编写相应的程序进行数值模拟,并将模拟结果与试验台数据进行对比,结果表明所建立起动模型能较为准确的模拟小型大涵道比涡扇发动机的起动过程。最后,利用已建立的起动模型研究了小型大涵道比涡扇发动机起动特性的影响因素。  相似文献   

4.
为提高涡轴发动机起动点火可靠性,对影响发动机起动点火时机、地面和空中起动点火成功的因素开展了分析研究;通过瞬时增大点火供油改善燃油雾化效果,在基于油气比点火供油的基础上,采用进口环境条件和燃油温度对起动点火进行修正;以点火时间为函数,采用步进式供油控制,逐步增大起动点火的供油量,增强发动机全包线起动点火的成功率.开展了发动机试验验证,试验结果表明:该技术可有效提高发动机包线内起动点火的可靠性和成功率.  相似文献   

5.
为了研究涡扇发动机喷口面积调节对高空加力接通的影响,开展了飞行试验研究。试飞中出现在加力起动阶段点火成功后,喷口面积放大不足导致风扇后压力急剧增高,发动机主动退出加力,在加力点火成功后增加加力燃油流量时,喷口面积过度放大使得加力燃烧室压力较低而熄火。通过调整喷口控制参数,提高加力点火阶段尾喷口面积放大程度,提高了加力接通性能;通过降低在供油量增加时刻的尾喷口面积放大程度,加力燃烧室能够持续稳定燃烧。试验结果表明:对尾喷口面积控制规律的调节显著提高了发动机的加力接通能力,对于其它涡扇发动机的加力接通设计与改进具有一定的借鉴意义。  相似文献   

6.
基于轴流涡轮部件设计点气动参数与相应几何尺寸,发展了一种计算现代涡扇发动机高、低压涡轮部件特性逐排计算方法,完成了相应的计算程序编制;并将其应用于两个型号发动机高压涡轮部件特性预测.计算结果与实验数据比较表明,作为一种近似方法具有可接受的工程精度,尤其适合于预测发动机涡轮部件小转速状态特性,为现代涡扇/涡喷发动机起动过程模拟与分析提供了模型基础.  相似文献   

7.
针对试验室无法设计实现机械连动装置确定某涡扇发动机给定转速,在研究分析某涡扇发动机转速控制系统的工作机理和影响该型发动机给定转速因素的基础上,提出了一种确定该型发动机给定转速的数据融合算法。通过对基于数据融合确定的给定转速试验,结果表明:提出的数据融合算法结构简单、计算简便、计算结果的相对误差都在1%以内,将其用于确定某涡扇发动机的给定转速是完全可行的。  相似文献   

8.
前言:本文重点讨论影响发动机起动的四大因素,包括气缸压力、最低起动转速、供油、点火正时。介绍改善发动机冷起动的几种装置,提供了在汽车维修、保养、使用中要注意的事项,以供同仁参考。一、影响发动机起动的几个因素分析 (一)、气缸压力发动机正常起动应该保证气缸压力正常,气缸压力由压缩比、气缸的密封性两方面因素共同决定。  相似文献   

9.
为研究发动机起动过程的影响因素,设计了车辆发动机起动过程测试方案,对6台不同工作条件下的某型车辆发动机进行了车辆起动过程测试,提取了起动过程的转速特征参数,研究了发动机起动过程的影响因素及机理.结果表明,高原起动环境、较高的摩托小时和技术状况劣化的喷油器使发动机起动过程中的最低着火转速提高,平均单缸升速度降低,导致发动机起动性能降低.  相似文献   

10.
基于高原环境模拟试验台,以一台压缩比为14.25的增压柴油机为试验对象,进行了平原0 m、模拟海拔高度1 000,2 000,3 000,3 750,4 500m处的起动性能试验,并研究了供油提前角和循环供油量对低压缩比增压柴油机在不同模拟海拔时的起动性能影响.结果表明,随着海拔升高,低压缩比柴油机起动过程初始期延长,升速期转速升高率降低,下冲转速增大,过渡期时间延长,起动性能恶化.且在高海拔条件下,海拔高度的上升对低压缩比柴油机起动性能的影响更加显著.在海拔高度2 000m及以下,海拔高度每升高1 000m,升速期及过渡期平均延长1.10s和1.47s;在海拔高度3 000m及以上,海拔高度每升高1 000m,起动过程中升速期及过渡期平均延长18.48,2.75s.在平原时,增大供油提前角使起动性能恶化:起动阶段初始期延长,升速阶段转速升高率降低,升速期和过渡期时间延长;不同循环供油量策略对平原起动过程影响较小.当海拔为4 500m时,适当增大供油提前角和适当减少喷油可改善低压缩比柴油机高原起动性能,循环喷油量过大会导致升速期内滞速现象的出现,起动稳定性变差,循环喷油量过小会导致初始期和升速期延长.  相似文献   

11.
HMT变速器速比跟踪控制对发动机转速的调节规律研究   总被引:2,自引:0,他引:2  
研究无级变速器目标速比与发动机目标转速的关系,分析等差式液压机械无级变速器的速比特性以及换段条件.提出了用试验台驱动装置模拟发动机工作特性的方法.在此基础上,应用速比跟踪系统进行了发动机工作转速的调节试验,并通过分析试验结果揭示了无级变速器速比跟踪系统对发动机转速的调节规律:当目标速比变化率较大时,发动机转速对目标转速的跟踪误差较大,反之,则较小;当实际速比大于目标速比时,发动机转速小于目标转速,反之,则发动机转速大于目标转速.  相似文献   

12.
航空发动机主燃油控制系统稳态过程分析   总被引:1,自引:1,他引:1  
王强  傅强 《科学技术与工程》2007,7(12):3028-3030
航空发动机的燃油系统用来供给发动机主燃烧室和加力燃烧室的燃油,在数字电子控制工作状态下,燃油流量受电子控制器控制。对航空发动机燃油系统工作原理进行分析后,针对不同转速对稳态过程进行了分析,给出了主供油量随油门杆变化的拟合曲线。  相似文献   

13.
通过分析发动机起动点火、喷油及进气量控制策略,确定了发动机冷起动过程中影响HC和NOx排放的关键参数为:拖转转速、起始喷油转速和点火推迟.研究表明:较高的拖转转速可以减少发动机起动所需的燃油量、改善燃油雾化质量、促进完全燃烧、降低HC排放;而过高的拖转转速则会恶化NOx排放;推迟点火可以有效地加速催化器起燃、显著地降低排放,若点火太迟只能有限加速催化器起燃,而且会增加油耗、使燃烧不稳定、增加失火,HC及NOx排放同时恶化.通过研究排放规律,选定了合适的冷起动参数,为今后精确排放标定奠定了基础.  相似文献   

14.
孙正雪 《科技资讯》2012,(1):119-124
建立了航空发动机喷口-压比线性模型和喷口执行机构数学模型,在此基础上对航空发动机压比控制系统展开研究,设计了三个回路的控制方式。对分油活门位移和作动筒活塞位移分别设计了PI控制和比例控制的内闭环,针对压比采用PID控制,并分别整定了各控制器的参数。仿真表明,该压比闭环控制系统在包线内控制压比效果良好,控制系统鲁棒性强。  相似文献   

15.
一种优化内燃机性能的自学习控制方法   总被引:3,自引:0,他引:3  
提出了一种可在内燃机电子控制中用于优化内燃机性能的自学习控制方法。这种自学习控制的特点是:当电动机运行工况稳定或变化缓慢时,对电动机进行自适应控制;当自适应控制过程达到稳定状态时,自动记录此时电动机的工况参数和被控制参数的值,并以同样的方法对电动机的所有工况进行逐点控制,这样就可以获得被控制参数的控制表(MAP),在获得该MAP之后,便可以根据此MAP实施开环控制,以汽油机空燃比控制为实例,详细阐  相似文献   

16.
基于MotoTron平台的汽油发动机控制器开发   总被引:3,自引:0,他引:3  
基于MotoTron控制器快速开发平台,开发了面向实际应用的汽油发动机快速原型控制器.在MotoTron平台的开发软件MotoHawk中建立了控制器系统框架,配置了底层软件,并定义了系统的输入输出信号;在Matlab/Simulink中,开发了汽油机控制策略,包括电子节气门控制、空气量控制、喷油控制、点火控制和附件控制等;在台架上进行了发动机起动测试,验证了发动机控制各功能模块.试验结果表明,发动机起动迅速、可靠,工况转换平稳,各工况的空燃比可控,实现了发动机控制器的基本功能.  相似文献   

17.
稀燃汽油机空燃比滑模-神经网络控制及实验   总被引:1,自引:1,他引:1  
提高电控汽油机空燃比控制精度是改善发动机燃油经济性、动力性和降低尾气污染的关键环节.针对稀薄燃烧汽油机的工作原理,提出了一个稀燃汽油机空燃比滑模-神经网络控制方案,并对方案中的各环节进行了详细描述.采用自行开发的发动机电控系统,在一台稀燃发动机上进行了实验,并对实验结果进行了分析.实验结果表明,采用滑模-神经网络方案对稀薄燃烧发动机空燃比进行控制,不仅可以提高准稳态时发动机的空燃比控制精度.而且可以降低过渡过程的空燃比超调.节气门急速变化时的空燃比超调最大为1个空燃比单位,最小为0.2个空燃比单位,大大优于车用电控系统的控制结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号