首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.  相似文献   

2.
White PM  Doetzlhofer A  Lee YS  Groves AK  Segil N 《Nature》2006,441(7096):984-987
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.  相似文献   

3.
Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.  相似文献   

4.
Boettger T  Hübner CA  Maier H  Rust MB  Beck FX  Jentsch TJ 《Nature》2002,416(6883):874-878
Hearing depends on a high K(+) concentration bathing the apical membranes of sensory hair cells. K(+) that has entered hair cells through apical mechanosensitive channels is transported to the stria vascularis for re-secretion into the scala media(). K(+) probably exits outer hair cells by KCNQ4 K(+) channels(), and is then transported by means of a gap junction system connecting supporting Deiters' cells and fibrocytes() back to the stria vascularis. We show here that mice lacking the K(+)/Cl(-) (K-Cl) co-transporter Kcc4 (coded for by Slc12a7) are deaf because their hair cells degenerate rapidly after the beginning of hearing. In the mature organ of Corti, Kcc4 is restricted to supporting cells of outer and inner hair cells. Our data suggest that Kcc4 is important for K(+) recycling() by siphoning K(+) ions after their exit from outer hair cells into supporting Deiters' cells, where K(+) enters the gap junction pathway. Similar to some human genetic syndromes(), deafness in Kcc4-deficient mice is associated with renal tubular acidosis. It probably results from an impairment of Cl(-) recycling across the basolateral membrane of acid-secreting alpha-intercalated cells of the distal nephron.  相似文献   

5.
Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.  相似文献   

6.
对朝鲜鹌鹑耳蜗感觉上皮的超微结构进行了研究。朝鲜鹌鹑耳蜗感觉上皮包括听壶感觉上皮和基乳突感觉上皮两部分。这两部分感觉上皮均由毛细胞和支持细胞构成。毛细胞基部与神经末梢形成突触,顶端角质锥中伸出动纤毛和静纤毛,与鸡的耳蜗毛细胞相似,朝鲜鹌鹑耳蜗毛细胞缺乏动纤毛。  相似文献   

7.
8.
Tritsch NX  Yi E  Gale JE  Glowatzki E  Bergles DE 《Nature》2007,450(7166):50-55
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.  相似文献   

9.
Chronic electrical stimulation of the auditory nerve in patients with profound sensori-neural deafness is becoming increasingly routine. Therefore, it is important to understand more about the long-term consequences of this procedure. Hitherto, structural studies in animals after electrocochlear stimulation have concentrated on the stimulated cochlea. Here we have examined the effects of unilateral extracochlear electrical stimulation on the spiral organ of both the ipsilateral and contralateral ears of the mature guinea pig, and have found alterations in the structure of the outer hair cells and their efferent nerve terminals in the contralateral as well as the ipsilateral cochlea. This is the first evidence for a structural influence of efferent activity on the cochlea. Although the importance of the efferent system, consisting of the crossed and uncrossed olivo-cochlear bundles, is well established in providing central control of the sensory pathways, its exact role in hearing is incompletely understood. However, it is known that the outer hair cells and their efferent innervation are important in their contribution to inner hair cell responses and in modulating the micromechanics of the whole cochlea. These efferent functions now appear to be related to an important part of cochlear morphology, and are also relevant to our understanding of cochlear neurobiology, normal development and the management of hearing disability in both adult and child.  相似文献   

10.
Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.  相似文献   

11.
Two-tone distortion in the basilar membrane of the cochlea   总被引:4,自引:0,他引:4  
L Robles  M A Ruggero  N C Rich 《Nature》1991,349(6308):413-414
When humans listen to pairs of thnes they hear additional tones, or distortion products, that are not present in the stimulus. Two-tone distortion products are also known as combination tones, because their pitches match combinations of the primary frequencies (f1 and f2, f2 greater than f1), such as f2-f1, (n + 1)f1-nf2 and (n + 1)f2-nf1 (n = 1, 2, 3...). Physiological correlates of the perceived distortion products exist in responses of auditory-nerve fibres and inner hair cells and in otoacoustic emissions (sounds generated by the cochlea, recordable at the ear canal). Because the middle ear responds linearly to sound and neural responses to distortion products can be abolished by damage to hair cells at cochlear sites preferentially tuned to the frequencies of the primary tones, it was hypothesized that distortion products are generated at these sites and propagate mechanically along the basilar membrane to the location tuned to the distortion-product frequency. But until now, efforts to confirm this hypothesis have failed. Here we report the use of a new laser-velocimetry technique to demonstrate two-tone distortion in basilar-membrane motion at low and moderate stimulus intensities.  相似文献   

12.
目的:通过对新生儿重症监护病房(NICU)窒息新生儿进行听力筛查,研究窒息对新生儿听力的影响。方法:对我院2005年10月至2006年12月期间NICU收住的窒息新生儿使用畸变产物耳声发射(DPOAE)模式进行初筛,对初筛未通过者用DPOTE+听脑干反应(ABR)进行复筛,复筛未通过者进行听力学评估及确诊。筛查于病情平稳后进行。结果:共筛查159例共318耳。初筛率和复筛率分别为100%和89.7%;初筛结果单耳阳性有26例26耳,双耳阳性有32例64耳,初筛阳性率为36.5%;复筛结果单耳阳性的1例1耳,双耳阳性9例18耳,失访6人,复筛阳性率19.2%;确诊8例,听力障碍发病率为5.61%。结论:①对NICU窒息新生儿进行听力筛查,DPOAE和ABR相结合的方法是一种可靠、可行的筛查方法。②本研究中,NICU窒息新生儿听力障碍发病率为5.61%。  相似文献   

13.
Rapid renewal of auditory hair bundles   总被引:14,自引:0,他引:14  
Stereocilia, also known as hair bundles, are mechanosensitive organelles of the sensory hair cells of the inner ear that can detect displacements on a nanometre scale and are supported by a rigid, dense core of actin filaments. Here we show that these actin-filament arrays are continuously remodelled by the addition of actin monomers to the stereocilium tips, and that the entire core of the stereocilium is renewed every 48 hours. This unexpected dynamic feature of stereocilia will help our understanding of how auditory sensory function develops and is maintained.  相似文献   

14.
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). At present, the function of presynaptic ribbons at these synapses is still largely unknown. Here we show that anchoring of IHC ribbons is impaired in mouse mutants for the presynaptic scaffolding protein Bassoon. The lack of active-zone-anchored synaptic ribbons reduced the presynaptic readily releasable vesicle pool, and impaired synchronous auditory signalling as revealed by recordings of exocytic IHC capacitance changes and sound-evoked activation of spiral ganglion neurons. Both exocytosis of the hair cell releasable vesicle pool and the number of synchronously activated spiral ganglion neurons co-varied with the number of anchored ribbons during development. Interestingly, ribbon-deficient IHCs were still capable of sustained exocytosis with normal Ca2+-dependence. Endocytic membrane retrieval was intact, but an accumulation of tubular and cisternal membrane profiles was observed in ribbon-deficient IHCs. We conclude that ribbon-dependent synchronous release of multiple vesicles at the hair cell afferent synapse is essential for normal hearing.  相似文献   

15.
将健康成年虎皮鹦鹉(Melopsitiacus undelafusp)分成三批按120mg/kg的剂量连续注射链霉素15天,分别于停药后15天、30天、60天时处死,对照组不给任何药物.然后制作石蜡切片并用光镜观察,检测对比实验组与对照组之间的不同.结果表明随着时间增加,高毛细胞数目增加,是毛细胞再生的结果;而矮毛细胞数目减少,直接导致了听力敏感性降低.可见毛细胞的再生是有可能的.  相似文献   

16.
目的通过不同年龄C57BL/6J小鼠耳蜗毛细胞形态学观察,探讨其毛细胞损失随年龄变化的趋势。方法选择C57BL/6J小鼠24只,分别于2月龄、4月龄、7月龄随机各选取8只动物处死取耳蜗,苏木精-伊红染色,制作耳蜗基底膜铺片,显微镜下观察耳蜗毛细胞的形态变化。结果C57BL/6J小鼠随着月龄的递增耳蜗毛细胞损伤呈加重的趋势:2月龄小鼠未见明显耳蜗毛细胞丢失;4月龄小鼠开始出现耳蜗外毛细胞损害,其损坏部位仅局限在耳蜗底回的起始端;7月龄小鼠耳蜗毛细胞损害比4月龄加重。这种随着年龄增长而发生的耳蜗损害遵循着从底回逐渐向顶回发展的规律,同时外毛细胞的损害比同区域的内毛细胞严重。结论C57BL/6J小鼠耳蜗毛细胞变化规律符合老年性耳聋特点,可以作为研究老年性耳聋的动物模型。  相似文献   

17.
Outer hair cells in the mammalian cochlea and noise-induced hearing loss   总被引:2,自引:0,他引:2  
A R Cody  I J Russell 《Nature》1985,315(6021):662-665
Hair cells in the mammalian cochlea transduce mechanical stimuli into electrical signals leading to excitation of auditory nerve fibres. Because of their important role in hearing, these cells are a possible site for the loss of cochlear sensitivity that follows acoustic overstimulation. We have recorded from inner and outer hair cells (IHC, OHC) in the guinea pig cochlea during and after exposure to intense tones. Our results show functional changes in the hair cells that may explain the origin of noise-induced hearing loss. Both populations of hair cells show a reduction in amplitude and an increase in the symmetry of their acoustically evoked receptor potentials. In addition, the OHCs also suffer a sustained depolarization of the membrane potential. Significantly, the membrane and receptor potentials of the OHCs recover in parallel with cochlear sensitivity as measured by the IHC receptor potential amplitude and the auditory nerve threshold. Current theories of acoustic transduction suggest that the mechanical input to IHCs may be regulated by the OHCs. Consequently, the modified function of OHCs after acoustic overstimulation may determine the extent of the hearing loss following loud sound.  相似文献   

18.
Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing β-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.  相似文献   

19.
In addition to the apical-basal polarity pathway operating in epithelial cells, a planar cell polarity (PCP) pathway establishes polarity within the plane of epithelial tissues and is conserved from Drosophila to mammals. In Drosophila, a 'core' group of PCP genes including frizzled (fz), flamingo/starry night, dishevelled (dsh), Van Gogh/strabismus and prickle, function to regulate wing hair, bristle and ommatidial polarity. In vertebrates, the PCP pathway regulates convergent extension movements and neural tube closure, as well as the orientation of stereociliary bundles of sensory hair cells in the inner ear. Here we show that a mutation in the mouse protein tyrosine kinase 7 (PTK7) gene, which encodes an evolutionarily conserved transmembrane protein with tyrosine kinase homology, disrupts neural tube closure and stereociliary bundle orientation, and shows genetic interactions with a mutation in the mouse Van Gogh homologue vangl2. We also show that PTK7 is dynamically localized during hair cell polarization, and that the Xenopus homologue of PTK7 is required for neural convergent extension and neural tube closure. These results identify PTK7 as a novel regulator of PCP in vertebrates.  相似文献   

20.
O Chisaka  T S Musci  M R Capecchi 《Nature》1992,355(6360):516-520
Gene targeting in mouse embryo-derived stem cells has been used to generate mice with a disruption in the homeobox gene Hox-1.6. Mice heterozygous at the Hox-1.6 locus appear normal, whereas Hox-1.6-/Hox-1.6- mice die at or shortly after birth. These homozygotes exhibit profound defects in the formation of the external, middle and inner ears as well as in specific hindbrain nuclei, and in cranial nerves and ganglia. The affected tissues lie within a narrow region along the anteroposterior axis of the mouse but are of diverse embryonic origin. The set of defects associated with the disruption of Hox-1.6 is distinct from and nonoverlapping with that of the closely linked Hox-1.5 gene. But both mutations cause loss, rather than homeotic transformation, of tissues and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号