首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过共价键合方法将叶酸配体和化疗药物甲氨蝶呤偶联于PEG化的纳米钻石载体上,获得纳米钻石-PEG-叶酸/甲氨蝶呤(ND-PEG-FA/GLY-MTX,NPFGM)药物输送体系。采用紫外-可见吸收光谱法测定了纳米钻石表面偶联甲氨蝶呤的量为(123±5.8)μg/mg。通过体外释药研究,表明NPFGM纳米颗粒在生理条件下具有良好的稳定性,而在微酸性溶菌酶存在下,酯键水解断裂导致药物甲氨蝶呤被催化释放。以乳腺癌细胞为模型,采用流式细胞技术表明细胞摄取纳米钻石药物体系主要通过小窝蛋白-决定、叶酸受体介导的靶向机制进入细胞。这些研究结果表明NPFGM是一个很有前途的药物递送平台,并为共价偶联药物提供新思路。  相似文献   

2.
纳米钻石(ND)因具有高生物相容性、高化学稳定性、对生物分子和药物高亲和力以及表面易于修饰等优点,使其在生物医药方面的应用备受关注。文章采用共价耦联方法,用NH_2-PEG-COOH(PEG)修饰ND形成PEG化纳米钻石(ND-PEG),使其作为药物载体,分别探究了在浓度为1 mol/L的Ac~-、Cit~(3-)和HCO~-_3介质中物理吸附抗癌药物阿霉素(DOX)的影响。发现ND-PEG对DOX吸附量的大小顺序为Ac~-HCO~-_3Cit~(3-),且远大于在去离子水中的吸附量,表明ND-PEG吸附DOX受阴离子调控。在Na_3Cit介质中负载DOX的量为125.24μg/mg,体外模拟释药表明在pH 5.0时体系的累积释药率为34.83%,其药物利用率最高。利用紫外可见分光光度计、傅里叶红外光谱仪和马尔文粒度仪对纳米粒子进行了表征。此外,通过细胞形态和MTT实验探究了该纳米药物体系与人肝癌细胞(HepG2)的作用,显示ND-PEG/DOX能高效杀死肿瘤细胞,这为制备高载药量的纳米钻石药物体系奠定了实验基础。  相似文献   

3.
以荧光纳米钻石(FND)作为药物载体和探针,转铁蛋白(Tf)作为靶向配体,聚赖氨酸(PL)做桥梁,制备了荧光纳米钻石-聚赖氨酸-转铁蛋白(FND-PL-Tf)靶向纳米颗粒;以人宫颈癌细胞(HeLa cells)为体外模型,研究靶向纳米颗粒与细胞的作用,探讨细胞摄取纳米颗粒的转运机制,为纳米颗粒靶向输送药物和肿瘤检测提供有价值的理论依据。结果表明细胞摄取FND-PL-Tf纳米颗粒的数量与颗粒浓度、时间及纳米颗粒表面偶联转铁蛋白量有关;由物理吸附或共价偶联Tf获得的FND-PL-Tf纳米颗粒均为网格蛋白决定、转铁蛋白受体介导机制进入细胞。这些研究表明FND-PL-Tf纳米颗粒具有潜在的靶向输送药物和肿瘤靶向检测功能。  相似文献   

4.
本文将生物素(Biotin)修饰于Fe3O4磁性纳米粒子表面制备了BIO-MNPs纳米材料。盐酸阿霉素(DOX)可以通过与生物素之间的氢键作用和自聚集作用负载于BIO-MNPs表面,实验条件下的最大负载量可达823.6 mg/g,且BIO-MNPs@DOX对DOX的释放在弱酸性环境下更优。体外溶血实验以及细胞毒性实验证明BIO-MNPs具有良好的血液相容性和较低的生物毒性;体外细胞摄取实验证明BIO-MNPs@DOX对肝癌细胞和人乳腺癌细胞具有较好的靶向性能,且具有良好的抑制效果。以上结果表明BIO-MNPs可作为药物载体负载抗癌药物DOX,且BIOMNPs@DOX在癌细胞的靶向抑制方面具有一定的应用价值。  相似文献   

5.
以UiO-66 为载体的金属有机框架对盐酸阿毒素(DOX)进行装载,再采用后合成修饰(Post-Synthetic Modification)方法得到DOX@UiO-66-NH2 DOX@UiO-66-NH2-FA 纳米粒子,考察UiO-66-NH2-FA 材料对DOX 的装载能力. 以一锅煮法制备装载DOX 的UiO-66(DOX@UiO-66),采用二乙烯三胺修饰DOX@UiO-66 以制备DOX@UiO-66-NH2,最后再以叶酸(FA)对DOX@UiO-66-NH2进行表面化学修饰,构建DOX@UiO-66-NH2-FA. 通过红外光谱法(IR)对UiO-66、UiO-66-NH2、UiO-66-NH2-FA 进行表征. 通过热重分析(TGA)对DOX、UiO-66-NH2-FA、DOX@UiO-66-NH2-FA 进行表征,结果表明由DOX 装载在材料UiO-66-NH2-FA 的DOX@UiO-66-NH2-FA 可有效的增强其热稳定性.  相似文献   

6.
制备了一种基于黑磷纳米片(BPNSs)的多功能纳米药物载体,能够联合化疗和光热疗法用于癌症治疗.BPNSs通过静电吸附作用吸附抗癌药物阿霉素(DOX),然后通过多巴胺(DA)自聚合形成聚多巴胺(PDA)涂层后,成功制备一种纳米复合载药材料BPNSs-DOX@PDA.BPNSs-DOX@PDA具有极好的DOX载药能力、优异的光热转换性能、pH-和光响应控制释药和较低的细胞毒性等优点.这些特点使得BPNSs-DOX@PDA成为一种卓越的抗肿瘤药物递送系统,具有临床应用的巨大潜力.  相似文献   

7.
一个自组装的金属有机框架Dy-NH2-BDC微晶可以采用DMF和CH2Cl2洗涤配合物Dy-NH2-BDC得到.经叶酸(FA)和双端羧基聚乙二醇(HOOC-PEG-COOH)修饰,可以得到Dy-NH2-FA和Dy-PEGCOOH样品.Dy-NH2-FA和Dy-PEG-COOH的结构经红外(IR)确证.热重分析(TGA)用来表征DOX(阿霉素,用于治疗许多常见癌症的蒽环类化学治疗剂)的装载情况.药物释放实验表明,DOX/Dy-NH2-FA样品中的DOX在酸性肿瘤环境中比正常体液环境(pH=7.4)释放快.DOX/Dy-PEG-COOH样品(比例20∶10和20∶20)在PBS缓冲液(pH=5.8, 0.1 mol/L)中释放144 h的荧光强度分别为77.6和196.7,接近于DOX在0.002和0.008mg/mL时的强度,均比DOX/Dy-NH2-FA样品(比例20∶10和20∶20)的荧光强度高.结果表明Dy-PEG-COOH样品的药物传递能力优于叶酸修饰系统,但并未得到良好的释放曲线.考虑到聚乙二醇的较大分子量,FA修饰系统与PEG修饰系统有诸多不同.  相似文献   

8.
荧光标记的叶酸修饰壳聚糖纳米载体研制   总被引:2,自引:0,他引:2  
制备荧光标记的叶酸偶联壳聚糖纳米粒,为抗肿瘤药物给药系统提供载体材料。通过叶酸活性酯与壳聚糖上的氨基反应,使叶酸与壳聚糖偶联。将异硫氰基荧光素与叶酸偶联壳聚糖进行化学嫁接,以离子交联法制成具有荧光的叶酸偶联壳聚糖纳米粒,并与肝癌HepG2细胞进行体外细胞实验。实验结果表明:叶酸活性酯用量和反应温度及试剂滴加速度是影响偶联比的主要因素;在叶酸活性酯与壳聚糖用量质量比为1:1,反应温度为30℃,滴加速度为2mL/min,反应时间为12h的条件下可得到偶联稳定的叶酸偶联壳聚糖;所制得的纳米粒粒径为290nm,形态规则,细胞荧光效果明显;此方法能用于制备荧光标记的叶酸修饰壳聚糖纳米粒载体。  相似文献   

9.
本文利用两种不同的抗肿瘤药物阿霉素(DOX)和苯丁酸氮芥(Cb)混合,通过再沉淀法制备了一种新型的复合药物纳米粒子.1 H NMR证明了DOX和Cb混合后通过氨基和羧基静电力相互作用形成超分子复合物,通过DLS、SEM、AFM、TEM等表征证明了复合药物纳米粒子具有规整的形貌,较窄的尺寸分布.三种肿瘤细胞模型(MCF-7、A549、HepG2)的细胞毒性实验证明了复合药物纳米粒子相比于单独的DOX、Cb、DOX/Cb混合物有着更好杀死肿瘤细胞的效果.选取HepG2采用Hoechst染色检测凋亡细胞成像以及Western说明了复合药物纳米粒子能更好的诱导了肿瘤细胞的凋亡.共聚焦实验则很好的验证了相比于自由药阿霉素(DOX),复合药物纳米粒子可以更容易被肿瘤细胞内吞.  相似文献   

10.
以廉价易得的农林废弃物花生壳(PE)为载体,负载对重金属Cr(Ⅵ)具有强吸附亲和性的纳米活性组分聚乙烯亚胺(PEI),制备一种新型纳米复合吸附剂PEI-PE。通过序批式吸附实验探究了PEI-PE对水中Cr(Ⅵ)的吸附性能,用动态柱吸附实验研究PEI-PE的实际应用潜力。结果表明:PEI-PE对Cr(Ⅵ)的吸附在300 min即可达到平衡,PEI-PE吸附Cr(Ⅵ)的过程符合Langmuir等温吸附模型和准二级动力学模型,属于单分子层化学吸附。在pH=3时,最大吸附量可达32 mg/g。在2种竞争离子Cl-、SO42-存在的条件下,PEI-PE依然表现出较高的吸附量。2 g的PEI-PE可将850 mL初始质量浓度为5 mg/L的含Cr(Ⅵ)废水处理后达到工业废水排放标准(0.5 mg/L),且吸附后的PEI-PE具有一定的脱附再生能力,可实现吸附剂的循环利用。  相似文献   

11.
合成了7-(双十二烷基胺)-4-羟甲基香豆素,通过光敏性的酯键将其引入到纳米载体GNR@SiO_2-DOX@CouC_(12)-HA (GSDCH)中,实现了药物释放的智能控制,制备了具有良好生物相容性与对Hela细胞的靶向性的纳米载体.结果表明:单独的阿霉素与癌细胞共孵育后,Hela细胞的存活率在50%以上;将DOX先载入纳米载体后,细胞存活率低于20%.与仅使用DOX相比,GSDCH结合了热疗和化疗,对Hela肿瘤细胞的治疗效果显著提高,在肿瘤治疗中具有很大的潜力.  相似文献   

12.
载姜黄素/阿霉素叶酸偶联壳聚糖纳米粒的制备   总被引:1,自引:0,他引:1  
姜黄素(CUR)是一种天然植物多酚,具有逆转肿瘤多药耐药的功效,与抗癌药物阿霉素(DOX)联合用药可以提高阿霉素对肿瘤细胞的敏感性,从而逆转肿瘤多药耐药性。以壳聚糖为载体,叶酸为靶向受体,三聚磷酸钠(TPP)为聚阴离子,姜黄素与阿霉素为药物模型,利用阴阳离子间的静电相互作用,制备了叶酸偶联壳聚糖载双药纳米粒,以达到纳米粒同时具有肿瘤靶向性和抗多药耐药的双重目的。目标产物通过红外光谱、SEM、Zeta电位仪表征了结构和形态,同时考察了不同反应条件对生成纳米粒的影响。结果显示在适宜反应条件(偶联叶酸的壳聚糖浓度和TPP的浓度分别为2.5 mg/m L和1 mg/m L,反应温度25℃,搅拌速度500 r/min,反应体系p H为5.0~6.0)下,得到载药纳米粒粒径约190 nm,Zeta电位为30.72 m V,阿霉素和姜黄素的包封率分别可达85.7%和93.9%,相比目前其他的一些双载药纳米粒,包封率具有明显的提高。  相似文献   

13.
通过原子转移自由基聚合(ATRP)在介孔二氧化硅纳米颗粒(MSNs)表面接枝具有pH响应的聚2-(二异丙基氨基)甲基丙烯酸乙酯(PDPA),点击化学修饰聚乙二醇(PEG)、叶酸(FA)及荧光基团异硫氰酸荧光素(FITC),制备无机/有机复合材料的核-壳结构纳米颗粒(MSNs@polymer(FITC/FA))。通过细胞实验证明了所合成的纳米颗粒的生物相容性以及对于肿瘤细胞的靶向性和示踪性,结果表明该纳米颗粒可以同时在核层和壳层分别包载抗肿瘤药物紫杉醇(PTX)和多药耐药逆转剂他克莫司(FK506),其释药动力学研究结果显示在生理环境pH 7.4的条件下仅有约20%的药物泄漏,在pH 5.0的条件下存在24 h后超过80%的药物可以被释放。实验证明通过使药物分别分布在核层和壳层,可实现药物的分阶段释放。MSNs@polymer(FITC/FA)有望解决临床上抗肿瘤药物的多药耐药性问题。  相似文献   

14.
纳米氧化钇空心球在生物医学领域具有广泛的应用.以酚醛树脂微球为模板,合成出了尺寸均一、分散性好的纳米Y2O3空心球(HYNPs).它不仅在体外表现出显著的酸性降解行为,而且负载抗肿瘤药物阿霉素(DOX)后,载药体系HYNPs-DOX也表现出明显的pH响应药物释放特点.pH为5.0时,72 h的药物释放可达到70.46%;而pH为 7.4时,72 h的药物释放仅25.04%.进一步通过激光共聚焦显微镜监测载药体系在细胞内的DOX释放,发现随着时间的延长,细胞内DOX的荧光逐渐增加,表明DOX在细胞内释放量的增加.体外抗肿瘤细胞毒性结果显示,HYNPs对肿瘤细胞MCF-7和MDA-MB-231的活性没有影响,而HYNPs-DOX则表现出较高的体外抗肿瘤效应,与游离DOX相当.可见,该材料作为抗肿瘤药物载体具有潜在的应用价值.  相似文献   

15.
文章以乙酸锰和柠檬酸为原料,采用溶胶-凝胶法分别制备了纳米MnO_2和纳米MnO_2负载的硅藻土。采用X-ray衍射(X-射线diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、N2吸附-脱附等对所制备的纳米MnO_2和纳米MnO_2负载硅藻土进行表征。以所制备的纳米MnO_2负载硅藻土为吸附剂,以初始质量浓度为100mg/L的模拟废水中苯酚去除率为主要考察指标,确定了较适宜的吸附工艺条件如下:吸附温度为25℃、吸附时间为100min、体系pH值为2、吸附剂用量为0.6g/L。该条件下的重复实验显示废水中苯酚的平均去除率达85.63%;吸附热力学结果表明,纳米MnO_2负载硅藻土对苯酚废水的吸附等温线符合Langmuir方程,其饱和吸附量为207.039 3mg/g。  相似文献   

16.
利用油水乳化法,制备具有壳-核结构的琼脂糖/玻璃珠复合材料,并偶联氨基苯硼酸,得到一种新型的亲和填料。对影响制备过程的琼脂糖/玻璃珠质量比、乳化剂的含量、环氧基团活化密度进行了优化。采用光学显微镜、激光粒度分析仪、红外光谱仪、热质量分析仪等对这种复合介质进行了表征,并考察亲和介质的吸附性能。结果表明:复合材料对辣辣根过氧化物酶(糖蛋白)的饱和吸附量为85 mg/g,远大于牛血清蛋白(非糖蛋白)6 mg/g的吸附量,并在2 mL/min流速下实现了对人血红细胞中糖化血红蛋白与非糖化血红蛋白的分离,在亲和色谱方面具有较大的应用前景。  相似文献   

17.
采用荷瘤小鼠为模型,将制备的功能化纳米钻石载药体系,如纳米钻石-聚乙二醇二胺-叶酸-阿霉素(NDPEG-FA-DOX)和纳米钻石-阿霉素(ND-DOX)通过尾部静脉注射至小鼠体内,阿霉素(DOX)作为实验对照组。定期测量小鼠的体重和肿瘤体积,由各组小鼠的平均体重变化表明纳米药物相对DOX具有低毒副作用;通过瘤体变化率对比说明纳米药物注射组的瘤体增长较PBS组缓慢,且ND-PEG-FA-DOX组效果更为显著,说明其具有一定的靶向作用;实验后期采集血液并对动物实施安乐死获取相应器官,绘制器官指数图,同时通过血液测试和生化指标分析,结果均证实所制备的纳米钻石载药体系对小鼠肝脏的毒副作用明显低于传统化疗药物DOX的毒副作用。  相似文献   

18.
设计基于玉米醇溶蛋白(Zein)-透明质酸(HA)的口服纳米载体用于结肠靶向的药物递送.使用超声透析法制备玉米醇溶蛋白-透明质酸-羟基喜树碱(HCPT)纳米药物(Zein-HA@HCPT),利用渴望函数分析法优化纳米药物制备条件,考察纳米药物的微结构、药物释放行为、细胞毒性和靶向摄取能力.Zein-HA@HCPT具有95%以上的药物包封率,有优异的生物学稳定性、生物相容性和独特的抗胃酸分解特性,结肠环境下的药物累积释放显著提升.Zein-HA@HCPT通过CD44受体介导的内吞作用被结肠癌细胞靶向摄取,可提高药物抗肿瘤疗效.  相似文献   

19.
采用碱性共沉淀的方法制备载体纳米Fe3O4,并选用硫酸铝对其进行包覆改性制备除氟吸附剂,优化制备条件,考察制备得出的吸附剂对氟化物的去除效果,并采用透射电镜(TEM)、能谱(EDS)、X线衍射(XRD)、振动样品磁强计(VSM)等对吸附剂的性质进行表征。研究结果表明:吸附剂最优制备条件参数为Fe3O4与Al投加量摩尔比1:2,制备反应pH=5.0。最优条件下制备的除氟吸附剂即纳米磁性铁铝复合物,其比表面积为63.37 m2/g,平均粒径为15~20 nm,饱和磁化强度为15.63 A·m2/kg,零电荷点pHpzc为11.2。该吸附剂适用pH范围广,在pH为4.0~10.0范围内除氟率均在84%以上,在pH为7.0时的氟化物吸附等温线符合Langmuir等温模型,吸附容量可达48 mg/g。  相似文献   

20.
以β-环糊精(β-CD)键合硅胶为载体,亚氨基二乙酸(IDA)为螯合基,制备了新型固定金属离子亲和吸附剂.通过13C固体核磁、元素分析对其进行了表征.研究了吸附剂对牛血清蛋白(BSA)的吸附特性,25℃时吸附剂对BSA的最大吸附量达35 mg/g吸附剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号