首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
采用绝热加速量热仪(ARC)研究了纯的过氧化环己酮(CYHPO)及其分别与乙二醇、异辛酸、正丁醇、水四种稳定剂混合后的绝热分解过程,得到了绝热分解过程的特性曲线及参数,并计算了反应的活化能。对测试数据进行校正和分析后的结果表明:纯的CYHPO分解温度低,分解速度快,具有很大的热危险性,但是加入某些高沸点溶剂后,CYHPO的热稳定性得到提高,分解过程中的热危险性显著降低。  相似文献   

2.
为了研究3,4-二硝基吡唑(DNP)的热分解性能和热稳定性,采用绝热加速量热仪(ARC)对其在绝热条件下的热分解进行了研究,得到了DNP绝热分解的温度、压力、温升速率等随时间及温度的变化曲线。结果表明:DNP的绝热分解分为四个阶段,后两个阶段为其主要热分解阶段,主要的热分解从245.5℃开始,绝热分解整体是较为缓慢的,没有自催化现象发生,证明DNP具有良好的热稳定性;根据温升速率方程及Arrhenius公式对这后两个阶段进行了动力学计算,两个阶段的热分解反应级数为0.5和1,活化能分别为218.4 kJ/mol、331.1 kJ/mol,指前因子分别为7.9×1018min-1、6.9×1028 min-1,并得到了DNP绝热分解温升速率随温度变化的数据模型。  相似文献   

3.
以过氧化二异丙苯(DCP)为研究对象,采用绝热加速量热仪(ARC)研究了不同浓度下杂质Cu~(2+)对其热稳定性的影响。通过数据分析得到了DCP在绝热分解过程起始分解温度(T0)、最高放热温度(Tf)、绝热温升(ΔTad)、最大温升速率(mm)等热力学参数,并通过拟合得到了分解活化能(Ea)。同时利用热惰性因子(?)对测试数据进行了修正。结果表明:杂质Cu~(2+)的存在会对DCP绝热分解参数产生明显影响,如市售DCP绝热分解的起始分解温度为101.5℃,而含0.97×10~(–3)%和4.87×10~(–3)%Cu~(2+)的DCP起始分解温度分别为90.1℃和90.3℃;随着杂质Cu~(2+)的增加,样品活化能有所降低,分别为164.47、162.24、156.83 kJ/mol,说明Cu~(2+)的存在使DCP的受热分解反应更易进行,增加了DCP的热分解危险性。  相似文献   

4.
为了研究3,4-二硝基吡唑(DNP)的热分解性能和热稳定性,采用绝热加速量热仪(ARC)对其在绝热条件下的热分解进行了研究,得到了DNP绝热分解的温度、压力、温升速率等随时间及温度的变化曲线。结果表明:DNP的绝热分解分为四个阶段,后两个阶段为其主要热分解阶段;主要的热分解从245.5℃开始,绝热分解整体是较为缓慢的,没有自催化现象发生,证明DNP具有良好的热稳定性;根据温升速率方程及Arrhenius公式对这后两个阶段进行了动力学计算,两个阶段的热分解反应级数为0.5和1,活化能分别为218.4 kJ/mol、331.1 kJ/mol,指前因子分别为7.9×10~(18)min~(-1)、6.9×10~(28) min~(-1),并得到了DNP绝热分解温升速率随温度变化的数据模型。  相似文献   

5.
采用热重分析仪(TG)和绝热加速量热仪(ARC)研究了过氧化二叔丁基(DTBP)与乙二醇、石蜡油和邻苯二甲酸二甲酯3种稳定剂混合后的热分解过程。实验结果表明:加入稳定剂后,DTBP的起始分解温度升高,反应最大温度、最大温升速率、最大压力和最大压升速率均有不同程度的下降。加入质量分数均为50%的3种稳定剂乙二醇、石蜡油和邻苯二甲酸二甲酯后,样品表观活化能由171.44 kJ/mol分别升高至201.79、235.08、229.11 kJ/mol,达到最大反应速率时间由78.76 min分别延长至122.05、197.79、141.48 min,表明稳定剂提高了DTBP自分解反应的难度,同时使DTBP在爆炸临界点前的时间延长。  相似文献   

6.
为解决N-硝基吡唑安全生产问题,利用反应量热仪EaysmaxHFCal测定N-硝基吡唑合成过程中的放热速率、传热系数、比热容等热力学数据,结果表明:加料过程中平均放热速率为6.72 W,保温过程中平均放热速率为0.11 W,理论绝热温升为111.19 ℃。采用绝热加速量热仪ARC测定硝化液的热稳定性,结果表明:硝化液绝热分解分为三个阶段,后两个阶段为其主要热分解阶段。主要的热分解在78.8 ℃开始,整体绝热分解过程较为缓慢。计算了第二段热分解过程的活化能及指前因子,分别为118.81 kJ·mol-1、6.94×1013 s-1。反应液到达最大反应速率用时24 h所对应的的温度TD24=48.11 ℃,通过冷却失效情形法,确定其危险度等级为2级,反应过程的热危险较低。  相似文献   

7.
膨化硝酸铵绝热分解的加速量热法研究   总被引:2,自引:0,他引:2  
该文利用加速量热仪研究了膨化硝酸铵的热稳定性,得到了膨化硝酸铵的温度、压力和温升速率随时间的变化曲线以及温升速率、分解压力随温度的变化等曲线。分析了其绝热分解的过程,计算了表观活化能、指前因子和反应热等参数。测试和分析结果表明,膨化硝酸铵是一种热稳定性良好的工业炸药氧化剂。  相似文献   

8.
针对芳香族硝基化合物生产、运输以及储存过程中引发的重特大燃爆事故,采用试验及模型计算等方式对其自加速分解温度(SADT)进行获取,并提出一种基于定量结构-性质关系(QSPR)的理论预测方法。通过绝热加速量热试验获取18种芳香族硝基化合物的热力学和动力学参数,以此计算得到25 kg标准包装下物质的自加速分解温度。应用多元线性回归(MLR)和人工神经网络(ANN)等机器学习方法分别构建相应的预测模型,最终验证并比较两种模型的拟合能力、鲁棒性和预测能力。结果表明:芳香族硝基化合物对应MLR模型和ANN模型的相关系数分别为0.893和0.975,ANN模型在匹配度方面明显优于MLR模型。  相似文献   

9.
绝热方法评价热安定性的改进模型与应用   总被引:12,自引:0,他引:12  
研究绝热理论及其在热安定性方面的应用,通过理论分析,提出了利用绝热方法评价含能材料热安全性的改进绝热温升速率方程,绝热初始放热温度及到最大温升速率所需时间的理论计算模型,分析了放热反应系统的热惰性因子对测试结果的影响,利用绝热加速流量热方法研究黑索金绝热安定性的结果表明,测试数据的校正值与改进模型的理论计算结果具有较好的一致性。  相似文献   

10.
过氧化二异丙苯热爆炸危险性研究   总被引:2,自引:0,他引:2  
 为了预防和减少过氧化二异丙苯(DCP)生产过程发生火灾爆炸事故,利用绝热加速量热仪,对DCP、DCP/20%碳酸钠和DCP/20%苯酚的热危险性进行了实验研究,得到其初始放热温度、最大温升速率、最大温升速率时间等热危险性参数和绝热放热曲线;对3种物质的测试结果进行了绝热校正。利用绝热相容性评价的判据初始放热温度和平均加速度的理论模型,计算DCP/20%碳酸钠和DCP/20%苯酚的相容性。结果表明,DCP、DCP/20%碳酸钠和DCP/20%苯酚的初始放热温度分别为97.47、106.40和115.59℃,最大温升速率分别为65.15、2.15和3.44℃·min-1,平均加速度分别为0.2977、0.0077和0.0127。在实际的工业生产中,所选取的碳酸钠和苯酚催化剂与DCP的相容性都较好,但比较二者发现,选用碳酸钠作为催化剂更为安全。  相似文献   

11.
用NETZSCH-STA409PC热分析仪研究了生物质花生壳的分解规律和动力学.花生壳的热分解主要有3个失重过程,第1个发生在80~100℃,为失水过程,对应DSC为吸热,失重量6%;第2个发生在100~380℃,为花生壳的热分解过程,该过程为吸热,失重量54%;第3个发生在380~700℃,为热分解残余有机物缓慢分解过程,失重量为16%;700℃后,基本恒重.讨论升温速率、粒度、气速对热分解曲线的影响.拟合了动力学方程函数,并求出动力学参数.花生壳分解可用三维扩散模型(D3)模拟,活化能E=141.67kJ.mol-1,指前因子lgA=8.645 4,用所得D3模型动力学方程预测,在花生壳分解过程中于360℃保温12min它的分解率近100%.这个结果能够用于优化气化分解过程.  相似文献   

12.
盐酸对硝酸铵热分解的影响   总被引:2,自引:0,他引:2  
利用C80微量量热仪测定了纯硝酸铵、混有盐酸的硝酸铵在热分解过程中的反应和放热特性.比较了纯硝酸铵热分解反应和加入盐酸后硝酸铵发生热分解反应的不同机理.根据实验测得的热分解反应热流速计算得到热分解反应的化学动力学和热力学参数.结果表明,盐酸对硝酸铵的热分解具有催化作用,其反应活化能小于纯硝酸铵的反应活化能.根据热爆炸理论,利用反应的化学动力学和热力学参数计算得到混有盐酸的标准包装硝酸铵的自加速分解开始温度.  相似文献   

13.
以TbCl3气溶胶为前驱体,在微纳米尺度研究了TbCl3在空气氛围中的高温热解机理,用XRD和FESEM分别表征了热解产物的物相组成和微观形貌.基于实验结果和热力学分析,讨论了TbCl3气溶胶热解生成TbO2的化学反应机理,以及促进TbCl3热解转变为氧化铽的动力学原因.研究结果表明:TbCl3气溶胶在空气氛围中热解可生成具有化学计量比形式的氧化物TbO2,当热解温度高于800℃时,热解产物为非化学计量比形式的Tb7O12,没有发现TbOCl物相;在气溶胶热解产物中可以观察到更多热解中间产物,从而对TbCl3的性质和热解过程的认识更充分.  相似文献   

14.
高纯超细BaTiO3前驱体的热解机理及动力学   总被引:3,自引:0,他引:3  
采用FT-IR、XRD技术,检测BaTiO3前驱体在不同温度下热解产物的组分、结构、晶型的变化规律,研究其热解机理。根据Broido线性化图解求动力学参数的方法,对三段热解过程动力学参数进行计算。由热解机理和动力学参数,优化热处理工艺条件所得的BaTiO3粉体粒度小,比表面大,近似球形,是电子陶瓷的优质资料。  相似文献   

15.
目的研究了阿斯匹林的热稳定性及热解动力学.方法采用TG热重仪测定药物的热解曲线,用多条升温速率法Freeman-Carrollde 法和 Ozawa 法处理热重数据并比较热解活化能和热解温度.结果计算出阿斯匹林的热解动力学参数活化能、指前因子、反应级数;热解动力学方程为dα/dt=1.15×108e-96.04/RT (1-α)1.91.结论阿斯匹林片剂的热稳定性大于原药.由于阿斯匹林对温度敏感,应低温储存.阿斯匹林在室温下分解10 %约需2.08 a.  相似文献   

16.
试验研究了以Pt/Co-BaO/γ- Al2O3为催化剂、二甲醚(DME)为还原剂的NOx储存还原(NSR)性能,以及还原时间和温度对NSR的影响规律,并通过程序升温脱附和程序升温表面反应分析了DME对其存储NOx热稳定性的影响.结果表明,在等温DME-NSR循环过程中,NOx的转化效率保持在60%~70%以上;DME能够促进催化剂中硝酸盐的分解和NOx的脱附,并还原NOx.  相似文献   

17.
报道了用热重法(TG)研究替硝唑(Tinidazole,TNZ)原药及片剂中替硝唑热分解非等温动力学以及药物的稳定性,并对用热重分析仪测定片剂含量的方法进行了探讨.推断出原药热分解过程为零级反应,其动力学方程为dα/dt=Ae-(Ea)/(RT),热分解反应活化能Ea为99.7kJmol-1,指前因子A为3.60×107s-1;片剂中替硝唑的热分解过程为三维扩散级反应,其动力学方程为dα/dt=Ae-(Ea)/(RT)3/2(1+α)2/3/[(1+α)1/3-1],活化能Ea为105.1kJmol-1,指前因子A为1.08×106s-1.实验表明替硝唑原药具有较高的热解活化能,热稳定性较好;在片剂中热分解机理和分解活化能发生改变,说明赋形剂对药物的热稳定性有一定影响.根据得到的热分解反应的机理函数和动力学参数,得到片剂有效存贮期与贮存温度的关系曲线,估算出在室温(25℃)下,分解率为10%时药物的存贮期为26.7年,分解率为5%时所需要的时间约为6.9年.  相似文献   

18.
采用TG-DTG技术研究了稀土铕(Eu3+)与对硝基苯甲酸(P-NBA)及2,2'-联吡啶(dipy)配合物在静态空气中的热分解过程,运用Achar法和oats-Redfern法,推断出该配合物第2~4步热分解的非等温动力学方程,同时给出了相应的动力学补偿效应的表达式.  相似文献   

19.
以TG-DTG为手段,研究二乙基次膦酸铝阻燃剂在氮气气氛中的热分解动力学;利用Kissinger-Akahira-Sunose(KAS)法、Flynn-Wall-Ozawa(FWO)法对其进行热分解动力学研究,计算出该阻燃剂的平均热分解表观活化能分别为260.2和259.4 kJ/mol;利用atava-estk法研究该阻燃剂的热分解机理属于相边界反应,得到其热分解动力学方程为g(α)=1-(1-α)1/3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号