首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
超细第二相粒子强化低碳微合金钢铁材料的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机进行单向压缩热模拟试验,研究了试验钢在形变诱导铁素体相变过程中ZrC粒子对铁素体晶粒细化的促进作用,结果表明:粒径小于1.0μm的ZrC粒子作为形变和再结晶核心可以加速铁素体形核,从而细化铁素体晶粒,为提高α-Fe形核率,试验钢获得超细组织的ZrC粒子临界体积分数是0.6%,当ZrC粒子的加入量为0.5%、轧制变形量为0.6时,轧后水冷可获得3~4μm的超细晶粒组织,抗拉强度约提高70%,材料综合性能显著提高.  相似文献   

2.
在低碳低合金钢熔炼过程中加入平均粒径为0.5 μm,体积分数为0.8%的ZrC粒子,研究了不同轧制变形量条件下的晶粒细化行为及力学性能.轧制变形过程中在ZrC粒子周围形成高位错密度和高晶格畸变区,成为形变核心和再结晶核心,促进了高温奥氏体非自发再结晶细化奥氏体晶粒;由于奥氏体晶粒尺寸细化,奥氏体晶界面积增大,随后进行的铁素体相变的铁素体形核位置增多,从而大大细化了铁素体晶粒尺寸;轧制变形量与ZrC粒子体积分数存在一定的最佳配合才能对晶粒细化有作用.本实验中轧制变形量为62%,ZrC粒子体积分数0.8%以及轧后水冷条件下,铁素体晶粒尺寸细化到9.8 μm,屈服强度和抗拉强度明显提高,分别达到386.4 MPa和522.1 MPa;同时冲击吸收功(AKV=118.5 J)不降低且延伸率(δ5=34.5%)有所提高,说明添加ZrC粒子可促进晶粒细化.  相似文献   

3.
以SPHC钢为对象,在Gleeble-1500型热模拟机上进行单道次热压缩试验,通过分析变形后的应力与应变曲线及变形过程中的金相组织变化,研究应变诱导相变的基本规律及铁素体晶粒细化效果.结果表明:在750~830℃的变形中存在应变诱导铁素体相变,并获得超细晶铁素体晶粒尺寸为1.6~4.6μm;降低变形温度将增加相变所需化学驱动力,促进应变诱导铁素体相变的发生,从而细化铁素体晶粒;在一定的应变条件下,应变诱导相变获得的铁素体晶粒尺寸和体积分数均随应变速率的增加而减少.  相似文献   

4.
以粒径为0.2~1.0μm的ZrC颗粒为增强相,采用压入铸造法制备含ZrC粒子的试验钢,通过热模拟实验、性能测试、透射电镜等方法,研究ZrC粒子对钢的组织细化和力学性能的影响.研究结果表明:ZrC粒子在基体20Mn2钢中分布均匀,能细化基体晶粒;在轧制过程中,ZrC粒子能加速形变诱导铁素体相变的进程,导致组织超细化;当ZrC粒子的平均粒径为0.4μm、加入量(体积分数)为0.5%时,实验室轧后水冷可获得晶粒粒径为3.9μm的9mm中板,材料的屈服强度提高58%,综合性能显著提高,这主要归因于微米ZrC增强相良好的细晶强化及第二相强化作用.  相似文献   

5.
外加陶瓷颗粒细化低碳微合金钢晶粒   总被引:1,自引:0,他引:1  
真空条件下,在低碳微合金钢中加入微米级ZrC陶瓷颗粒,使其成为钢在热轧时奥氏体的形变核心及其形变诱导铁索体的再结晶核心以细化晶粒.研究了添加不同体积分数ZrC粒子对低碳微合金钢组织和力学性能的影响.结果表明,通过本实验研究出的颗粒外加方式可使ZrC颗粒有效分散于钢中,对钢的组织产生明显的细化作用,可使钢的晶粒细化到5.5μm,钢的强度得到较大幅度的提高,钢的显微组织为铁素体.当加入ZtC颗粒的体积分数为1.1%时,可获得最佳综合力学性能.  相似文献   

6.
低碳钢过冷奥氏体形变过程组织演变机制   总被引:7,自引:4,他引:7  
低碳钢过冷奥氏体形变过程将发生形变强化相变及铁素体的动态再结晶,导致晶粒超细化.与未形变的过冷奥氏体等温转变相比,形变极大地促进了奥氏体向铁素体的转变,使铁素体形核率急剧升高,铁素体晶粒尺寸显著降低.形变强化相变是一以形核为主的过程.在形变后期,当形变强化相变铁素体转变基本完成后,将发生铁素体的动态回复和动态再结晶.比较不同应变速率对组织演变影响的结果表明,应变速率较低条件下,易形成铁素体与第2组织层状分布的条带特征;应变速率较高时,组织的条带特征不显著.  相似文献   

7.
研究了低碳钢过冷奥氏体在760℃,形变速率为1 s-1和10 s-1变形时组织演变规律.结果表明,形变速率为1 s-1时真应力-应变曲线双峰特征为形变强化相变和铁素体动态再结晶的表征,相变形核集中在铁素体/奥氏体相界前沿奥氏体高畸变区,晶粒长大在时间和空间上受到限制,细化能力较高;形变速率提高到10 s-1时,相变动力学提前,曲线只表现为形变强化相变的单峰特征,相变形核除了在上述铁素体/奥氏体相界前沿奥氏体高畸变区,还分布到奥氏体晶内各处,晶粒间约束有所减小,尺寸稍大.通过形变强化相变和铁素体动态再结晶可以获得平均晶粒尺寸为(1.98士1.07)μm和(2.33士1.01)μm(10 s-1)左右的微细铁素体晶粒.  相似文献   

8.
研究了碳、锰含量对低碳(锰)钢形变强化铁素体晶粒数目变化的影响.结果表明,形变使低碳(锰)钢过冷奥氏体内部形核位置增加,铁素体形核率显著提高,晶粒大大细化.碳、锰含量提高有利于钢中过冷奥氏体累积变形的增加,形变强化相变晶粒细化能力增强,而碳的促进作用尤为显著.  相似文献   

9.
采用热膨胀法对X70HD(抗大变形)管线钢在特定条件下铁素体的静态相变点以及动态相变点进行测定。以测得的相变点为依据,制定两阶段累积变形量高达80%的热模拟实验。通过固定第一阶段变形参数,变化第二阶段变形过程中的变形温度以及应变速率,随后马上淬火,分析第二阶段变形温度与应变速率这2个因素对形变诱导铁素体生成量以及铁素体晶粒粒径的影响。研究结果表明:所获得的形变诱导铁素体为等轴铁素体,并且该等轴铁素体晶粒细小;第二阶段变形在奥氏体低温区时,应变速率越低越有利于形变诱导铁素体的生成;在奥氏体非再结晶区的较高温度范围内,应变速率越高越有利于形变诱导铁素体的生成。  相似文献   

10.
基于相变动力学和热力学原理,讨论了椭球形铁素体晶核在奥氏体晶界形核及长大的动力学,根据形变促进相变的理论,变形引起位错密度增加而提高了奥氏体内的存储能,考虑了变形存储能增加对形核的促进作用,提出了预测控轧控冷过程的α晶粒尺寸的方法·用该方法模拟计算应变量、轧制温度、冷却速率及化学成分等因素对α晶粒尺寸的影响,与已有的实验结果吻合良好,表明这种理论处理方法可用来模拟这种相变过程·  相似文献   

11.
通过热模拟实验考察了在连续冷却条件下,不同的冷却速度对钒微合金化钢的形变诱导铁素体相变(DIFT)组织演变的影响规律.结果表明,大变形后的冷却速度越大,实验用钢的铁素体晶粒越细小;在相同的冷却速度下,钢中的钒含量越多,铁素体晶粒越细小.在较低的冷却速度下,钢中的钒含量越多,钒的碳氮化物析出越多;当冷却速度较大时,钒微合金化实验用钢中没有钒的碳氮化物析出.  相似文献   

12.
中碳钢温变形过程的组织演变包含铁素体动态回复、再结晶和渗碳体的析出球化等过程.采用Gleeble1500热模拟试验机研究了初始组织形态对含碳0.48%(质量分数)的中碳钢在温变形中上述复杂过程的影响.结果表明:初始组织为珠光体 先共析铁素体的试样在温加工变形中渗碳体层片发生了扭折、溶断到逐渐球化的过程,在铁素体回复再结晶的同时伴随着细小弥散的渗碳体颗粒从过饱和铁素体中析出,得到微米级铁素体晶粒和颗粒状渗碳体弥散分布的复相组织,但等轴状铁素体晶粒与弥散的渗碳体颗粒沿变形方向呈带状不均匀分布.温加工变形促进初始组织为马氏体的中碳钢中渗碳体析出和铁素体回复与再结晶.由于初始条件下碳的分布在微观尺度下相对均匀,变形后获得细小等轴铁素体与均匀分布颗粒状渗碳体的组织.  相似文献   

13.
利用光学显微镜和透射电子显微镜详细研究了在不同应变量下 ,形变诱导铁素体的微观组织结构·结果表明 :形变诱导铁素体的形态与正常退火的相似 ,而尺寸明显细化 ;在应变速率一定的条件下 ,形变诱导铁素体的量增加主要是形变诱导的作用 ,而尺寸的减小主要是再结晶的作用  相似文献   

14.
微合金化对超细晶中厚板显微组织的影响   总被引:1,自引:0,他引:1  
在Gleeble 1500热模拟机上,通过820~790℃温度范围内的多道次热压缩变形模拟了中厚板的精轧工艺,考察了不同铌、钒(氮)含量的低碳钢的组织演变过程、微合金元素的碳氮化物的析出行为和对形变诱导铁素体相变(DIFT)的影响.结果表明:变形过程中有部分奥氏体转变为铁素体,依变形的温度不同在变形间隔时间内有逆相变或亚动态相变发生;变形后快速冷却得到平均晶粒直径低于5μm的超细晶组织.单独添加钒对DIFT具有抑制作用,可以细化显微组织;钒-氮复合添加促进DIFT,但使组织粗化;添加铌基本不会抑制DIFT,能显著细化显微组织.变形后冷速越小,钢种间差距越明显.微合金化元素的作用与其在变形过程中...  相似文献   

15.
通过热模拟实验考察了低碳钢在略高于Ar3温度变形时发生形变诱导铁素体相变(DIFT)的组织演变规律;探讨了变形后连续冷却以及在不同温度下保温对DIFT组织的影响·结果表明,DIFT组织含量随变形量的增大而增多,但在较大的变形量下仍然有部分奥氏体没有发生DIFT;在随后的冷却过程中,未转变奥氏体通过静态相变形成粗大的铁素体,与形变诱导铁素体组织一起形成混晶组织·DIFT铁素体晶粒在形变后冷却过程中发生长大现象·实验测定和理论计算结果都表明,在连续冷却条件下,形变诱导组织存在晶粒长大终止温度,当温度低于该温度时DIFT晶粒停止长大;在不同温度等温时,也存在DIFT晶粒稳定的温度上限,在低于该温度保...  相似文献   

16.
V和V-N微合金化低碳钢碳氮化物的形变析出   总被引:2,自引:2,他引:2  
通过热模拟压缩实验考察了V和V-N微合金化低碳锰钢在860~740℃范围内多道次变形时的组织演变和碳氮化物析出规律及其相互影响.结果表明,含V钢中添加少量的N促进了变形奥氏体中V的碳氮化物(尤其是氮化物)的析出和形变诱导铁素体相变.V的碳氮化物析出降低了奥氏体中固溶的V,从而减弱了固溶V对形变诱导铁素体相变的抑制作用.碳氮化物析出在奥氏体的局部区域造成贫碳区,也促进了铁素体形核.在相同处理工艺下与V钢相比,V-N钢中铁素体内碳氮化物开始析出的时间短,析出相的数量多,长大速度慢,分布弥散.  相似文献   

17.
Q235碳素钢超细铁素体在奥氏体内的形核   总被引:4,自引:1,他引:4  
利用扫描电镜观察了Q235碳素钢形变强化相变过程中超细铁素体在奥氏体内部的形核;使用背散射电子衍射(EBSD)技术分析了析出的铁素体取向.结果表明,随内、外界条件不同,奥氏体内有两类典型的铁素体形核地点:形变带及奥氏体晶界附近的形变不均匀区.原始奥氏体晶粒尺寸的增加,形变温度的降低有利于铁素体的形变带形核.在的超细铁素体最佳形成温度区间,靠近形变可使铁素体及第2组织均匀分布.形变带形核造成带状分布的铁素体及第2相,不仅形貌上出现方向性,铁素体取向也出现择优.  相似文献   

18.
通过热模拟实验研究了分段冷却模式下变形温度、保温温度及保温时间对Nb-Ti微合金热轧双相钢组织演变及性能的影响.结果表明:降低变形温度可促进铁素体的转变,使马氏体形态由大块状过渡到岛状;保温温度从740℃逐渐降至580℃时,铁素体转变量先增加后减少,保温温度为660℃时铁素体转变量达到峰值;随保温时间延长铁素体转变量增加,且铁素体转变量与时间的关系曲线呈“S”型.采用超快冷+空冷+层流冷的冷却模式并通过调整终轧温度及空冷时间获得了630~710MPa的热轧双相钢,屈强比≤061,相应的组织为铁素体+马氏体或铁素体+马氏体+少量的贝氏体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号