首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
舰艇抗冲瓦整体冲击隔离新概念及其机理研究   总被引:3,自引:2,他引:1  
基于声阻抗失配原理,提出了舰艇抗冲瓦对水下爆炸冲击的整体隔离新概念.采用波动理论和Taylor平板模型.以冲击波在水、覆盖层、空气层、船体钢中的传播过程为研究对象,建立了实心敷设层结构(消声瓦的简化模型)和带空腔敷设层结构(抗冲瓦)的流固耦合模型.利用Abaqus软件建立舰艇抗冲瓦三维冲击响应模型.算例结果表明,抗冲瓦能够很好地隔离水下爆炸冲击波.大大降低船体结构材料应力和加速度冲击响应峰值,并能在广泛的频域内显著降低舰艇冲击响应.  相似文献   

2.
针对水下爆炸作用下舰船整体运动响应的理论预报问题,将船体结构简化为等截面直梁,以炸药在船体梁中部正下方爆炸工况为研究对象,将爆炸载荷压力曲线划分为五个典型阶段.结合平板边界条件下的冲击波和气泡载荷压力分布函数,建立了冲击波和气泡联合作用下船体梁整体运动响应的简化理论计算模型,并利用船体梁模型试验对该方法进行了验证.结果表明:所建立的水下爆炸作用下船体梁整体运动响应理论模型具有一定的合理性,能够反映船体梁整体运动过程及响应幅值.  相似文献   

3.
运用AUTODYN对波纹夹芯板在爆炸载荷作用下的动力响应进行了数值模拟。建立了包括炸药、空气、夹芯板结构及支座在内的三维有限元计算模型,分析了爆炸载荷作用下冲击波与结构的流固耦合过程以及波纹夹芯板的动力响应过程,研究了面板、芯层的厚度和屈服强度对夹芯板挠度和能量吸收的影响。数值模拟表明:波纹板在爆炸载荷作用下的动力响应可以分为冲击波与结构的流固耦合阶段、芯层的压缩以及板的整体动力响应等3个阶段;由于波纹芯层在垂直于波纹的方向上其抗弯刚度较大,在结构平行于波纹的边界处更容易受载荷作用而出现褶皱现象;随着面板、芯层壁厚及屈服强度的增大,后面板的最大挠度和夹芯板的整体吸能也随之减小。实际应用中需对芯层、面板的厚度及屈服强度进行合理的设计,使结构既经济又能满足服役环境。  相似文献   

4.
针对舰船设计初期缺少水下爆炸冲击响应预估方法的问题,提出了一种将DDAM方法和Taylor平板理论相结合的舰艇水下爆炸冲击响应理论模型。该理论模型根据Taylor平板理论将船底简化为自由平板,根据DDAM方法将船体结构各层甲板简化为质量-弹簧系统以模拟各层甲板对底舱的反作用。计算得到了船体结构各层甲板冲击响应,并与缩比模型试验数据进行了对比验证。结果表明这种简化分析方法能够较好模拟舰艇舱段各层甲板在水下爆炸的冲击响应,可为舰艇设计初期的冲击环境预估提供借鉴。  相似文献   

5.
抗冲瓦能够很好地实现对水下非接触爆炸载荷的整体冲击隔离.其特殊的空腔结构是否同时具有隔声性能也广为关注,为此,在某海域港湾内对一艘试验船进行了敷设与未敷设抗冲瓦的声辐射噪声对比试验.试验结果表明,抗冲瓦在广泛的频域内均具有良好的隔声性能.舰艇湿表面敷设抗冲瓦对舰艇本体噪声向水中辐射的抑制效果量级为:0.1~1 kHz频段约为5 dB:1~3 kHz约为10 dB;3 kHz以上15 dB,能够较大地降低舰艇的水中辐射噪声,为提高舰艇整体的隐身性能提供了一种新的技术和方法.  相似文献   

6.
水下爆炸冲击波作用下多层圆柱壳的动响应   总被引:2,自引:0,他引:2  
研究了无限域流场中球形药包爆炸时两端简支多层圆柱壳在水下爆炸冲击波作用下的动响应.由于假定流场是无旋、无粘和不可压缩的,故可用Laplace方程加以描述;而在圆柱壳的运动方程中考虑了流体动压力和冲击波压力的共同作用.利用Galerkin方法对耦合方程进行简化并数值求解,得到了多层圆柱壳在水下爆炸冲击波作用下的响应特性.  相似文献   

7.
水下爆炸冲击波作用下多层圆柱壳的动响应   总被引:3,自引:0,他引:3  
研究了无限域流场中球形药包爆炸时两端简支多层圆柱壳在水下爆炸冲击波作用下的动响应。由于假定流场是无旋、无粘和不可压缩的,故可用Laplace方程加以描述;而在圆柱壳的运动方程中考虑了流体动压力和冲击波压力的共同作用。利用Galerkin方法对耦合方程进行简化并数值求解,得到了多层圆柱壳在水下爆炸冲击波作用下的尖特性。  相似文献   

8.
在冲击载荷作用下,基于水下结构的动力学方程,结合Hilbert-Huang变换(HHT)推导出冲击作用下结构响应与模态参数的关系,并识别了水下结构的频率和模态阻尼比.HHT方法适合处理冲击等非平稳响应,设计的带通滤波器能自动选取截止频率,可以准确地得到各阶模态响应.且只需要结构适当一点的冲击响应,就可得到结构的固有频率和模态阻尼比.最后,以一水下矩形钢板为例,经数值计算在典型的爆炸冲击载荷作用下结构的振动响应,通过本方法得到了结构的固有频率和模态阻尼比,再以水下圆柱壳结构为例,同样得到了结构的固有频率和模态阻尼比,验证了本方法在冲击作用下识别水下结构模态参数的可行性.  相似文献   

9.
圆柱壳在水下径向爆炸载荷下的弹塑性动力响应   总被引:6,自引:0,他引:6  
基于圆柱壳与液流场相互作用的流固耦合运动条件和大挠度变形理论,研究无限长圆柱在水理爆炸冲击载荷作用下的弹塑性动力响应问题,采用对位移和作用进行Fourier级数展开的方法来分析圆柱的弹塑性行为,有介Runge-Kutta方法进行数值计算,得到水下圆柱壳在爆炸冲击载荷下弹塑性动力响应的规律。  相似文献   

10.
以某近岸场地为研究背景,通过选取合理的材料本构模型及状态方程,建立水下爆炸荷载作用下近岸场地动力响应数值分析模型,利用ANSYS/LS-DYNA进行近场水下爆炸荷载作用下动态响应分析.研究爆炸冲击作用下冲击波在近岸场地的传播特性以及近岸场地动态响应的变化规律.研究表明:在冲击波传播过程中,其传播特性会受到边界面的影响;...  相似文献   

11.
为解决水下冲击波作用下带声学覆盖层结构的动响应问题,提出了敷设声学覆盖层结构遇水下非接触爆炸冲击波的流固耦合分析方法.冲击早期高频作用段采用声学波动理论,以冲击波在水、覆盖层、钢板中的传播过程为研究对象,利用冲量等效修正冲击早期Taylor板模型反射系数;冲击波早期高频段过后,覆盖层的影响主要体现在其质量效应上,将覆盖层质量加载在其对应的结构有限元结点上,并结合二阶DAA,给出流固耦合计算方法,分析结构动响应,该方法大大缩减了有限元计算规模.最后实施了敷设去耦瓦加筋圆柱壳水下爆炸试验,其加速度峰值与试验偏差在20%以内,速度峰值偏差在10%以内,应变峰值偏差在15%以内,充分验证了计算方法.  相似文献   

12.
水下爆炸载荷作用下气背固支方板的动态响应分析   总被引:1,自引:0,他引:1  
分析了炸药水中爆炸冲击载荷作用下气背固支钢方板的动态响应过程. 通过对不同装药量和炸距下的水下爆炸冲击作用试验,使用更准确的水介质冲击载荷模型,采用改进的强化系数方形屈服线假设和刚线性硬化材料屈服模型,对固支气背薄钢方板的2种运动形态的动态响应过程进行了理论分析,得到了板的动态响应解析解并进行了典型情况下的计算. 结果表明,实验和理论计算结果有较好的一致性,验证了理论假设与分析的合理性.  相似文献   

13.
针对船舶设备在水下爆炸冲击环境下,其动态响应情况直接影响设备的工作性能和可靠性的问题.从系统耦合振动理论出发,基于设备与船体一体化抗冲击分析方法,采用数值模拟方法对水下爆炸条件下的船舶大型设备及船体结构进行冲击响应时域分析.研究结果表明,采用一体化分析方法的结果与实际试验吻合较好,同时通过确定合理的舱段长度,既可以减少计算规模,又能得到好的计算精度.  相似文献   

14.
介绍了舰载设备双波冲击试验机正波发生系统的基本结构,对系统中水锤现象进行了分析.建立了正波发生系统的非定常流动模型,采用特征线法对该模型进行求解,分析了系统的动态压力变化情况;建立了系统的恒定流动模型,对两种算法下管路内压力变化情况和冲击锤的速度进行了比较.结果表明系统中存在水锤现象,并可以用非定常流动模型进行描述,该算法下冲击锤速度低于恒定流动模型计算结果.  相似文献   

15.
 利用有限元软件ANSYS/LS-DYNA建立钢筋混凝土板在不同介质中(空中和水下)爆炸的数值模型,在对比分析爆炸冲击波在空中和水下传播特性的基础上,研究了空中和水下爆炸冲击波对钢筋混凝土板动态响应及损伤程度的影响,并对比分析了不同炸药量及起爆距离对钢筋混凝土板在空中和水下爆炸时动态响应的影响规律。研究表明,在近爆区域内,爆炸冲击波在空中和水下的传播特性存在较大的差异:在空中的传播速度较水下快,并且冲击波压力在空中衰减较水下快;但水下爆炸冲击波压力峰值较空中爆炸大很多,对钢筋混凝土板的潜在破坏能力较强。两种介质中爆炸时钢筋混凝土板的破坏形态对比分析,发现无论是迎爆面还是背爆面,同等炸药量及起爆距离下水下爆炸时混凝土板损伤程度均较空中爆炸时大。  相似文献   

16.
水下爆炸圆柱壳塑性动态响应实验及数值计算   总被引:7,自引:3,他引:4  
采用实验与数值模拟相结合的方法,对圆柱壳结构在水中受到柱形TNT炸药产生的冲击载荷作用下的动力响应过程进行研究.对不同装药量、爆炸距离和爆炸角度的影响分别进行了实验,利用大型有限元软件MSC.DYTRAN,对流场边界采用流-同耦合的处理方法进行计算,并将计算结果与实验数据进行对比,结果表明,计算结果与实验结果具有较好的一致性.证明了在有限区域内采用MSC.DYTRAN有限元软件中的流-固耦合方法进行水下爆炸的数值计算是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号