首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
 高介电常数介电材料在储能方面的特殊作用使其在电工、电子技术领域有着重要的应用。随着电子工业的发展,高储能密度介电材料受到越来越多的关注,出现了一些新型的高储能密度介电材料。高储能密度介电材料具有高的介电常数和击穿强度,其发展的关键是提高储能密度。本文对近年来高储能密度介电材料的研究发展进行了概述,主要讨论了通过对钛酸钡的改性(即掺杂改性、表面包覆改性和复合材料制备)来提高介电材料的储能密度。分析了钛酸钡/聚合物复合材料的制备方法及其介电性能的影响因素,其中,陶瓷填料和聚合物基体2相界面的相容性是复合材料介电性能的重要影响因素。同时,指出了解决BaTiO3粒子在聚合物基体中的分散问题、填料和聚合物基体的选择以及制备过程中工艺条件的控制都是研究兼具高介电强度和高介电常数复合材料的发展方向。  相似文献   

2.
对高储能密度电容器复合介质材料作了研究.在采用介电陶瓷/有机聚合物作复合介质材料的实验中,研究了复合材料的介电系数与组成成分的关系,研究发现,ε随陶瓷成分的增加而增大,并且存在一个临界组分,在此组分时,ε有突变.研究表明,用介电陶瓷与有机聚合物复合可制出储能密度较高的电容器介质材料.  相似文献   

3.
高储能密度电容器复合介质材料的研究   总被引:2,自引:0,他引:2  
对高储能密度电容器复合介质材料作了研究。采用介电陶瓷/有机聚合物作复合介质材料的实验中,研究了复合材料的介电系数与组成成分的关系,研究发现,ε随陶瓷成分的增加而增大,并且存在一个临界组。  相似文献   

4.
超级电容器作为一种新型的电化学储能元件,以充放电效率高、循环寿命长等优点引起研究者的大量关注,而电极材料是决定超级电容器性能的一个关键性因素。常见的电极材料主要有:碳材料、金属化合物材料和导电聚合物材料三大类。当它们单独作为超级电容器电极材料时,碳材料展现高功率密度和优异的循环稳定性,但其比电容较低;而金属化合物和导电聚合物材料具有高比电容,但由于它们导电性差,致使其循环稳定性和倍率性能较差。因此,超级电容器电极材料的研究关注点是碳材料与其他材料组成复合材料,以制备出兼具高比电容、良好循环稳定性和倍率性能的超级电容器电极材料。  相似文献   

5.
正在能量存储领域,高能量密度和高功率密度一直是人们追求的目标[1-2]。随着便携式电子设备,智能穿戴设备的兴起,柔性储能材料和设备的需求逐渐增大。最近,超级电容器由于其具有功率密度高,循环稳定性好,充放电速度快等优点,已经被广受关注[3-4]。然而,目前面临的主要挑战是它们的低能量密度。可以通过提高电极材料的比电容或者拓宽器  相似文献   

6.
超级电容器的储能机理与关键材料研究进展   总被引:1,自引:0,他引:1  
超级电容器作为一种新型的储能元件,具有高功率密度和高循环寿命等优点,在许多领域特别是混合电动汽车方面具有广阔的应用前景.电板材料和电解液是决定超级电容器性能的根本因素,本文对超级电容器储能机理,以及起级电容器关键材料研究进展进行了综述.  相似文献   

7.
高储能密度的介电电容器可以很好地用于电子束,高功率微波,定向能武器,电磁装甲等脉冲功率系统。高的储能密度、低的损耗以及良好的温度稳定性是储能电容器的未来发展方向。采用sol-gel法在Pt(111)/Ti/SiO_2/Si衬底上制备出不同Nd~(3+)掺杂含量的富锆Pb1-3x/2NdxZr0.948Ti0.052O3(PNZT,x=0.02,0.04,0.06,0.08)薄膜。研究了不同Nd~(3+)掺杂含量PNZT薄膜微观结构、铁电性能及储能性能的影响。结果表明:所制得的薄膜均为钙钛矿纯相,且晶粒细小均匀。Nd~(3+)掺杂的PNZT薄膜拥有较高的击穿场强EBDS≈3 600 k V/cm,优异的(Pmax-Pr)值和良好的温度稳定性。随着Nd~(3+)掺杂含量的增加,储能密度和效率均呈现出先增加后减少的规律。当x=0.04时,储能密度W=20.66 J/cm3,储能效率η高达89.2%;当x=0.06时,PNZT薄膜具有最佳的温度稳定性;当x=0.08时,PNZT薄膜由驰豫铁电体向正常铁电体转变。  相似文献   

8.
超级电容器电极材料的结构设计   总被引:1,自引:0,他引:1  
超级电容器由于具有功率密度大和循环寿命长的优势受到了广泛的关注.电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素.电极材料的组成、晶体结构、微纳结构形态等对其电化学性能具有重大影响.赝电容电极材料的性能与晶体内部的孔道结构密切相关,具有大孔道的电极材料其比容量明显高于只含有小孔道的电极材料.合理调控电极材料微纳结构形态如设计多孔结构、中空结构有利于增大电极的电化学活性表面,进而获得更多的电荷存储量,是提高储能性能的有效途径之一.将赝电容电极材料与导电基体复合生长可以提高材料整体的电导率,进而提高材料的比容量与倍率性能.通过对超级电容器电极材料结构的合理设计进而实现其储能性能的提高已经成为电化学储能领域的研究热点,对于推动超级电容器的发展具有重要意义.  相似文献   

9.
铁电聚合物的结晶区相变对其介电和储能性能有显著的影响。本文利用溶液流延法制得厚度为20μm的P(VDF-HFP)厚膜,并通过单向拉伸工艺改变样品结晶性能。然后采用X射线衍射仪(XRD)和差热分析仪(DSC)研究了拉伸处理对P(VDF-HFP)结晶相结构的影响,利用阻抗分析仪和铁电测试仪分别比较了拉伸前后介电、聚合物能量存储和释放性能的变化。结果表明,不同HFP摩尔含量的P(VDF-HFP)厚膜拉伸后,不仅非晶区分子链趋于有序,聚合物膜缺陷减少,而且晶区发生了从非极性的α相到高极性的β相的转变,使介电响应降低,耐电强度增强。拉伸后的P(VDF-HFP)95.5/4.5mol%厚膜耐击穿电压高达900 MV·m~(-1),该电场下放电能量密度高达27.7J·cm~(-3)。经放电脉冲测试,P(VDF-HFP)95.5/4.5mol%拉伸膜在500MV·m~(-1)电场下循环持续放电次数超过1 000次,放电能量密度接近10J·cm~(-3)。P(VDF-HFP)优异的能量存储和放电特性使其在高储能密度电容器领域有广阔的应用前景。  相似文献   

10.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫。在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注。对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料。最后分析了石墨烯基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   

11.
超级电容器因其高功率密度、长循环寿命,兼具传统电容高功率密度和电池高能量密度的优点,引起了人们的极大关注.超级电容器电极材料种类繁多,按储能原理可以分为双电层超级电容器、赝电容超级电容器和电池型超级电容器三类.双电层超级电容器介绍了几类主流的双电层电极材料的研究现状,同时很多研究者将赝电容电极材料和电池型电极材料混为一谈,本文对这两类材料的不同从原理上进行了区分,介绍各自的代表性材料,最后展望了超级电容器电极材料未来发展趋势.  相似文献   

12.
实验将MXene/PVDF(聚偏氟乙烯)(A)作为介电增强相,将BN(氮化硼)/PVDF(B)作为击穿增强相,交替涂膜制成三明治(ABA型)结构PVDF复合电介质材料。利用场发射扫描电子显微镜(FESEM)和X射线衍射(XRD)对复合电介质薄膜的结构、形貌以及填料的分散状态进行了表征,并着重研究了材料的介电性能及储能特性。结果表明:三明治结构电介质材料能协调介电与击穿之间的矛盾,起到协同增强电介质材料储能密度的效果。其中,A_(2.5)B_2A_(2.5)型PVDF复合电介质材料的介电常数达25.1(100Hz下),是纯PVDF的2.5倍,介电损耗仍保持较低水平(tanδ=0.03);此外,与MXene/PVDF 2.5wt%单层膜相比,其击穿强度提升了2倍(110.28MV·m~(-1)),储能密度提高了201%(1.35J·cm~(-3))。  相似文献   

13.
生物质碳材料具有高比表面积、轻质、可再生、价格低廉等优势,是一种很有前景的超级电容器的电极材料,随着电子器件的微型化,对储能器件的柔性也提出了一定的要求。为了满足人们对柔性电子器件日益增长的需求,解决储能器件小型化、柔性化等问题,本文利用氢氧化钾活化法,经过高温刻蚀棉花秸秆制备出具有多孔结构的碳材料,并将该材料制备成电极组装成微型超级电容器(MSCs),测试其电学性能。结果表明:当电流密度为0. 33 mA/cm时,比容量为32 mF/cm;弯曲直径在20 mm时,弯折2000次后仍有85%的电容保有量。本文以棉花秸秆为原材料制备MSCs的方法简单,且器件具有优异的电化学和机械性能,在未来柔性、小型电子器件领域具有广泛的应用前景。  相似文献   

14.
溶胶-凝胶法制备铌镁酸铅独石电容器瓷料杜国维,马肇曾,肖志纲,张文林,陈伟北京科技大学材料物理系,北京100083由于微电子技术的迅速发展,独石多层电容器已大量用于各种电子设备,以满足超小型化和高可靠性要求。目前全世界每年独石电容器其产值已近10亿美...  相似文献   

15.
拥有高的储能密度值和良好的温度稳定性的介电薄膜电容器在现代微电子系统中非常具有吸引力。为研究不同底电极对(Ba_(0.904)Ca_(0.096))(Zr_(0.136)Ti_(0.864))O_3(BCZT)薄膜储能性能的影响,采用溶胶凝胶法制备了沉积在不同底电极上的BCZT薄膜。除了Pt(111)/TiOx/SiO_2/Si底电极(简写为Pt)外,引入了LaNiO_3氧化物导电层构造LaNiO_3/Pt复合底电极。微观结构测试结果表明,LaNiO_3氧化物导电层的引入有效的改善了BCZT薄膜的表面形貌,薄膜表面气孔尺寸明显变小。电学性能测试结果表明,直接沉积在Pt底电极上的BCZT薄膜储能密度为8.58 J/cm~3,效率很低,仅为64.6%;相反,沉积在LaNiO_3/Pt复合底电极上的BCZT薄膜在相同电场下其储能密度为12.53 J/cm~3,效率提升到84.7%。此外,沉积在LaNiO_3/Pt复合底电极上的BCZT薄膜显示出良好的温度稳定性:在20~210℃的温度范围内,储能效率保持在80%以上。  相似文献   

16.
作为一种绿色环保的新型储能装置,超级电容器近年来发展迅速,电极材料是决定超级电容器性能与制造成本的最主要因素。碳材料因种类多样、价格廉价并具有较高的比表面积、较高的导电率和非常好的化学稳定性而被作为一种重要的电极材料广泛应用于储能元件中,主要包括活性碳、碳微球、碳纳米管、石墨烯等。碳基超级电容器是以碳材料作为主要电极材料的一类电容器。本文详细介绍了不同碳基电极材料的研究发展状况,以及碳基超级电容器的研究与应用进展。  相似文献   

17.
导电高分子电极材料由于其自身稳定性差和迟滞的电化学反应效应等缺点限制了其实际应用.构建三维金属基@导电高分子复合电极材料是一条行之有效的解决导电高分子固有缺陷问题的途径.本文以二氧化锰为氧化剂协同电化学聚合的方法合成了三维镍@聚苯胺核/壳复合材料电极.经过理性设计和可控制备,该电极材料有效地提高了全方位的储能性能,其独特三维鸟巢状和高导电性的金属骨架结构有助于电解质离子和电子在电极表面的高速传输.此外,利用三维镍@聚苯胺与前期工作已合成的三维镍@二氧化锰@聚吡咯分别作为正负极,一种高度匹配的不对称超级电容器也被顺利组装.经测试研究表明,这种不对称超级电容器具有良好的储能性能,工作电压能拓宽至1.3 V,最大能量密度和功率密度也能分别达到23.3 Wh·kg-1和5 870.8 W·kg-1.  相似文献   

18.
一、产品用途与性能特点随着晶体管及其线路的迅速发展,为整机的小型化创造了有利条件,相应地要求提供小型化的元件来配合。电容器在这一方面突出地要求供给低工作电压,大容量(或低阻抗)而体积显著减小的产品,人们所熟知的是小型铝电(角羊)电容器,可是固体电(角羊)质钽电容器与前者比较,更具有优越之处,亦克服了铝电(角羊)电容器所存在的缺点。它具有:  相似文献   

19.
研究了Na2SO4/SiO2复合储能材料的工艺性能.进行了成型压力、烧成温度和保温时间3因素3水平L9(33)正交实验.分析了这些因素对储能材料的致密度与高温强度的影响,从中获得了致密度和高温强度最佳时的工艺参数.对储能材料的蓄热性能进行了初步研究,结果表明Na2SO4/SiO2复合储能材料的蓄热密度是显热陶瓷蓄热料的2.7倍.  相似文献   

20.
无机电介质薄膜相对有机电介质材料具有更高的工作温度范围,相对无机块体陶瓷材料又有更高的击穿场强和储能密度,因而近年来受到研究者的关注.从无机电介质薄膜材料的5种类型:顺电薄膜、铁电薄膜、弛豫铁电薄膜、反铁电薄膜和线性电介质薄膜,分类综述了过去10余年这个领域优化其储能性能的手段与思路,从不同尺度归纳无机电介质薄膜的储能改性策略,最后展望发展趋势,如应用场景的挖掘、能量效率与能量密度的平衡和多尺度改性等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号