首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
通过单层两跨预应力框架,对竖向及水平加载下的塑性铰出铰模式,控制截面塑性铰所需转动能力以及其所能提供的塑性转动能力等方面进行了对比研究.在研究过程中考虑了相对受压区高度和预应力度影响.研究结果表明,当各塑性铰均具有足够转动能力时,竖向及水平加载下的塑性铰出铰模式存在很大差别.其中竖向加栽下,预应力框架梁能达到完全的塑性内力重分布,而水平加栽下则不能-此外,随相对受压区高度增加,竖向加栽下完成完全塑性内力重分布时所需塑性铰转动能力呈递增趋势;而水平加载下完成最大塑性内力重分布时所需塑性铰转动能力却呈递减趋势.  相似文献   

2.
目的研究填充墙的布置对SRC-RC竖向混合框架结构抗震性能的影响,为结构设计提供参考.方法利用SAP2000对6种不同填充墙布置模型的静力弹塑性分析,即填充墙框架的Pushover曲线、承载力、延性、破坏机制以及性能点处的层间位移角.结果填充墙的不同布置改变了框架结构的刚度、内力分布和塑性铰破坏机制,填充墙满布以及底部无填充墙的层数小于转换层的SRC-RC竖向混合框架结构具有较好的抗震性能,其基底承载是无填充墙框架的2~5倍,延性系数降低,但在结构成为机构体系前,结构的塑性铰多且较为均匀,能够耗散罕遇地震释放的大量能量;转换层以上布置填充墙的结构基底承载力为无填充墙框架的1.2~1.5倍,在罕遇地震时塑性铰集中分布在底部无填充墙框架层,容易在转换层形成薄弱层.结论满布填充墙的SRC-RC竖向混合框架结构具有良好的抗震性能和抗倒塌性能;对于由于建筑需要底部无填充墙布置的SRC-RC竖向混合填充墙框架结构,底部无填充墙布置的层数宜小于转换层数.  相似文献   

3.
普通钢筋混凝土规则框架的弹塑性地震反应   总被引:1,自引:0,他引:1  
利用自编的非弹性动力分析程序对严格按我国规范设计的不同烈度区规则框架结构进行了多波输入下的地震反应分析.结果表明,修订后规范加严小震作用下的层间位移角控制条件可明显改善结构在大震下的位移反应;按修订前、后规范设计的9度区框架在大震下均形成了以梁铰为主的塑性耗能机构,预计能较好满足预定的抗震性态要求;按修订前规范设计的8度区二级抗震等级框架在大震下形成了其塑性耗能机构以柱铰为主、并存在出现层侧移机构风险的不利反应状况,按修订后规范设计的8度区框架的反应性态有所改善,但形成的塑性耗能机构中柱铰仍然偏多,表明其柱抗弯能力增强措施仍有进一步提高的必要;7度区框架的抗震性态比8度区框架略好,但抗震措施对柱的保护仍然不够,其柱抗弯能力增强措施也宜进一步提高.  相似文献   

4.
通过对三层框架结构的计算分析并与试验结果对比验证,证明了静力弹塑性分析法的有效性;结合实际工程,对六层框架进行了静力弹塑性和时程分析,得到该框架地震作用下的塑性铰分布和侧向变形.  相似文献   

5.
为研究异形钢管混凝土整体框架的抗震性能,将相同条件下的异形钢管混凝土框架与钢筋混凝土框架进行了对比.对一个原6层钢筋混凝土框架建筑,采用异形钢管混凝土框架进行建模,并与原钢筋混凝土框架模型分别进行了框架的破坏机制、Pushover曲线、刚度、延性、以及性能点处的层间位移角分析.结果表明,相同面积的异形钢管混凝土柱和钢筋混凝土柱各自组成的框架,异形钢管混凝土框架的承载力比钢筋混凝土框架要大得多,在倒三角工况和均布力工况下,承载力分别提高了6.23与5.58倍;异形钢管混凝土框架塑性铰的出现顺序满足"强柱弱梁"的设计准则;破坏时,塑性铰的变形程度要深于钢筋混凝土框架,异型钢管混凝土框架和钢筋混凝土框架的变形曲线均为剪切型,且最大层位移角均出现在第2层;在性能点处异形钢管混凝土框架的层位移要小于钢筋混凝土框架.  相似文献   

6.
为了解决SRC-RC竖向混合框架承载力和刚度的突变问题,避免形成薄弱层,共进行了7个工况的静力非线性计算,对SRC-RC竖向混合框架的抗震性能进行了分析.通过计算给出了SRC-RC竖向混合框架的基底剪力与顶点侧移曲线、极限层间侧移角及塑性铰分布.结果表明:SRC结构层数与结构总层数的比值不应小于1/3,以保证梁铰侧移机...  相似文献   

7.
平面框架弹塑性过程的分析   总被引:4,自引:0,他引:4  
本文提出将按规范算出的水平地震力做为基本水平荷载,作用于钢筋混凝土平面框架,然后采用等比例加载,用分段弹性分析法求出由于梁、柱的裂缝,屈伏产生刚度蜕化的框架在弹性、裂缝和塑性状态下的工作性能,如梁、柱出现裂缝和塑性铰的顺序,各层最大弹塑性位移,极限承载能力,延伸系数等。  相似文献   

8.
为了进一步了解预压装配式框架的地震反应特征,在1榀单跨3层预压装配式混凝土框架在低周反复荷载作用下的试验基础上,文章采用SAP2000程序对其进行静力弹塑性分析,了解预压装配式混凝土框架的受力性能、变形能力和框架的破坏机制。试验研究表明:在水平和竖向荷载共同作用下,框架梁端负弯矩叠加区首先出现塑性铰,加载后期梁端塑性铰发生充分转动;框架层间极限位移角为1/42~1/67时,承载能力没有出现明显下降。理论分析表明:预压装配式预应力混凝土框架在基本烈度地震作用下,仍能保持弹性状态;罕遇地震下框架最大层间位移角出现在1层,为1/43,与试验值较为接近,小于规范规定的限值1/50。预压装配式混凝土框架具有较好的抗震性能。  相似文献   

9.
建立多个钢筋混凝土空间框架有限元模型,研究不同位置去除板格对结构框架梁柱受力的影响.考察各模型节点处梁柱塑性铰产生顺序,得到梁板组合作用对结构节点处梁柱塑性铰的影响规律.结果表明:去除板格位于框架梁负弯矩端时,因参与作用的板筋减少、梁端实际抗弯能力降低,节点负弯矩端的梁铰比去除前更早产生;去除板格位于框架梁正弯矩端时,因节点左右梁端弯矩分配系数发生改变,梁负弯矩端分配的弯矩增大使塑性铰比去除前更早产生;去除楼板处因楼板在结构平面内的约束作用减弱,通过影响柱顶侧移和反弯点高度使柱顶、柱底弯矩发生改变,并影响柱顶扭矩,从而影响框架柱端的塑性铰开展.  相似文献   

10.
钢筋混凝土框架非线性全过程分析   总被引:4,自引:0,他引:4  
本文将钢筋混凝土非线性全过程分析方法从单根构件推广到框架结构中,研究框架受力和变形的全过程,并着重分析了多种单跨两层框架。对单跨单层框架的分析表明计算结果与试验相当接近.框架柱的实际变形曲线随加载过程不断变化,框架最后失去承载能力与塑性铰的个数有关,而轴力引起的二次矩影响在框架中不如在单根悬臂柱中那么突出。  相似文献   

11.
摘要:针对强震作用下螺栓球网格结构杆件塑性铰超低周疲劳断裂问题,设计了两端带螺栓球节点的圆钢管组合试件模型。对三种高强螺栓的管球组合试件进行了大位移循环加载试验,开展了螺栓球网格结构杆件塑性铰位置、范围、形状及形成机理的研究。试验结果表明:两端带螺栓球节点的圆钢管杆件中部首先进行塑性变形,在往复荷载作用下塑性变形区域不断延杆件轴向扩展,杆件塑性铰在拉荷载下缩颈,在压荷载下截面椭圆化,中部区域刚度退化形成凹陷,最终开裂;塑性铰产生的位置在距杆件中点截面直径大小的高度范围内。  相似文献   

12.
13.
曾德光 《科学技术与工程》2012,12(12):2856-2860
在考虑塑性的结构分析中,结构破坏标志是结构中出现了足够多的塑性铰,结构变成可变体系,从而破坏.因此,结构中出现的第一个塑性铰必须有足够的转动能力,以保证在继续加载后,其他截面也出现塑性铰.利用有限元法对钢筋混凝土连续梁的塑性铰转动能力进行计算,以确定结构出现的第一个塑性铰有足够的转动能力.  相似文献   

14.
均布荷载作用下两端固支梁的弹塑性分析   总被引:3,自引:0,他引:3  
通过单位荷载法分析了两端固支超静定梁在均布荷载作用下的弹塑性加载及变形过程,并给出了加载各阶段的弯矩和位移计算公式.分析结果表明,受力变形过程可分为4个阶段:弹性阶段:固支端附近产生塑性变形阶段;固支端为塑性铰而固支端附近塑性区卸载阶段;固支端保持为塑性铰而梁中部部分区域产生塑性变形直至形成塑性流动阶段.  相似文献   

15.
在ABAQUS中建立多个钢筋混凝土(RC)空间框架有限元模型,通过不同位置去除板格,研究整浇楼板对RC框架结构的框架梁、柱塑性铰开展和内力情况,得出整浇楼板对结构节点处梁、柱塑性铰的影响规律。结果表明:去除板格位于框架梁负弯矩端时,因参与作用的板筋减少、梁负弯矩端实际抗弯能力降低,节点负弯矩端的梁铰比去除前更早产生;去除板格位于框架梁正弯矩端时,因节点左右梁端弯矩分配系数发生改变,梁负弯矩端分配的弯矩增大使塑性铰比去除前更早产生;去除楼板处因楼板在结构平面内的约束作用减弱,通过影响柱顶侧移和反弯点高度使柱顶、柱底弯矩发生改变,并影响柱顶扭矩,从而影响框架柱端的塑性铰开展。  相似文献   

16.
一致激励下的混凝土斜拉桥振动台试验   总被引:1,自引:0,他引:1  
以某一典型中等跨径混凝土斜拉桥为研究对象,设计了1∶20大比例振动台全桥试验模型.采用Chi-Chi波和场地人工波进行了纵、横桥向小幅四台阵全桥振动台试验,并对该试验模型进行了场地人工波输入下的横桥向破坏性试验.试验结果表明:纵桥向输入时,由于Chi-Chi波长周期丰富,激起结构反应较大;横桥向输入时,两条波的频谱特性在结构横向周期附近基本相同,故激起结构反应相差不大;结构在场地人工波1.3g横桥向输入时,桥塔上横梁主筋断裂、混凝土大面积剥落、发生明显破坏,上横梁与塔柱之间形成的塑性铰导致桥塔的框架效应明显削弱,桥塔得到了有效保护,达到了试验预期目标.  相似文献   

17.
进行了钢管混凝土(CFST)柱-钢筋混凝土(RC)环扁梁节点的静载和低周反复荷载试验,分析了节点的破坏形态、延性、耗能能力等性能。试验结果表明,钢管混凝土核心区未发生屈服破坏情况;对于静载,塑性铰产生于扁梁和环扁梁交界处,对于低周反复荷载,塑性铰产生于环扁梁上;环扁梁与钢管混凝土柱间未发现明显滑移现象。节点连接可靠,具有较好的延性以及耗能能力,能够满足延性抗震设计要求。  相似文献   

18.
Introduction In most reinforced concrete (RC) structures, a large stiffness is needed in order to limit structural deforma- tion for service load conditions. In seismic resistant structures, however, the energy dissipation demands are imposed and inelasti…  相似文献   

19.
根据钢框架强柱弱梁的抗震设计原则,按照有效控制梁上塑性铰位置的思路,对在梁腹板上进行开孔削弱的节点形式,通过开孔位置和大小的设计,控制节点处塑性铰形成的位置,进行三维有限元模拟分析,并将削弱位置和尺寸不同的节点构造形式与传统的梁柱节点进行对比分析。ANSYS模拟结果表明,采用腹板开孔的形式能大大缓解节点的应力状态,改善节点的延性性能,降低节点发生脆性破坏的可能性,提高结构的抗震性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号