首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.  相似文献   

2.
对于连通图G,矩阵Q(G)=D(G) A(G)称为图G的拟拉普拉斯矩阵,其中D(G)为图的度对角矩阵,A(G)为图的邻接矩阵.本文利用矩阵的一些性质,推导出连通图的拟拉普拉斯谱半径的一个上界.并将该上界与已有的一些结论结合具体图例作了优越性比较.  相似文献   

3.
设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。  相似文献   

4.
设G是n阶简单连通图,则L(G)=D(G)-A(G)称为图G的拉普拉斯矩阵,其中A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵.结合非负矩阵谱理论,利用图的边数、顶点数、最大度、最小度给出了图的拉普拉斯谱半径的新上界,同时给出达到上界的极图,并通过举例将所给的上界与已有的上界作比较,结果说明在一定程度上新上界优于已有结果.  相似文献   

5.
设G=(y,E)是n阶简单连通图,D(G)和A(G)分别表示图G的度对角矩阵和邻接矩阵,则L(G)=D(G)-A(G)称为G的拉普拉斯矩阵利用图的度序列,平均二次度和图的公共邻点数结合非负矩阵谱理论给出了L(G)的最大特征值的一些上界.  相似文献   

6.
设图G是一个有n个顶点、m条边的简单图,Q(G)为图G的无符号拉普拉斯矩阵,本文利用图的度序列平方和上界,给出了简单图无符号拉普拉斯谱半径的一个新的上界。  相似文献   

7.
D为图的G度序列对角矩阵,A为图的邻接矩阵.Q=D+A为图的无符号拉普拉斯矩阵.Q的最大特征值ξ(G)称为图G的无符号拉普拉斯谱半径.这里将图的2度,平均2度等概念推广到k度与平均k度,得到了图的关于无符号拉普拉斯谱半径的一个新的上、下界.最后举例与图的几个已知经典的界进行了比较.  相似文献   

8.
设G是一个简单无向图,A是图G的邻接矩阵,对角矩阵D=diag(dl,d2,…,dn)是G的顶点度矩阵,则L+=D+A称为G的拟拉普拉斯矩阵.本文研究了G的拟拉普拉斯矩阵的特征多项式QG(μ)的系数,利用图G的边数、度序列和三角形个数给出了QG(μ)的一些系数的代数表达式.  相似文献   

9.
令A(G)表示G的邻接矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.在这篇文章中,我们分别确定了给定点连通度、给定块数和给定悬挂点数的图类中无符号拉普拉斯谱半径最大的图的结构.  相似文献   

10.
给出一个图G,称矩阵Q=D+A为无符号Laplacian矩阵,其中A表示G的邻接矩阵,D表示G的顶点度的对角矩阵.定义无符号Laplacian能量为矩阵Q的特征值与图的顶点度的算术平均值的差的绝对值之和.研究了循环图的无符号Laplacian能量的上界,得到了几个有意义的结果.  相似文献   

11.
设G是一个n阶的简单有向连通图,令A(G)为有向图G的邻接矩阵,D(G)为有向图G的出度对角矩阵,则有向图G的无符号拉普拉斯矩阵可以表示为Q(G)=A(G)+D(G).利用图中顶点v_i的出度d_i~+和平均二次出度m_i~+,给出一些有向图G的无符号拉普拉斯矩阵谱半径q_1(G)更精细化的上下界,并通过数值例子证实新上下界的有效性.  相似文献   

12.
设G是具有顶点n,边数m的简单图。定义G的Seidel无符号拉普拉斯能量为Seidel无符号拉普拉斯矩阵的特征值与■的差的绝对值之和。文中利用不等式技巧讨论了双圈图的Seidel无符号拉普拉斯能量的上界,得到了几个有意义的结果。  相似文献   

13.
双圈图的无符号拉普拉斯特征多项式的系数   总被引:2,自引:2,他引:0  
设图G为简单图,G的无符号拉普拉斯矩阵Q(G)=D(G)+A(G),其特征多项式记为φ(G,λ)=∑n i=0pi(G)λn-i.给出了双圈图的无符号拉普拉斯特征多项式的常数项pn(G),并证明了pn(G)仅与双圈图的基图有关.  相似文献   

14.
设G=(V,E)为n阶简单连通图,D(G)和A(G)分表示图G的度对角矩阵和邻接矩阵,则L(G)=D(G)-A(G)称为图G的Laplace矩阵。利用图的顶点度、最大度、平均二次度和图的公共邻点数,结合非负矩阵谱理论给出了图的Laplace谱半径的新上界,同时给出了达到上界的极图。  相似文献   

15.
设G是一个具有n个顶点、m条边的简单图,S(G)表示G的Seidel矩阵,d_i表示顶点v_i的度,又以DS(G)=diag(n-1-2d_1,n-1-2d_2,…,n-1-2d_n)来表示对角矩阵,再依次定义图G的Seidel拉普拉斯矩阵为SL(G)=DS(G)-S(G)、图G的Seidel无符号拉普拉斯矩阵为SL~+(G)=DS(G)+S(G)和图G的Seidel无符号拉普拉斯能量为■,这里σ1L+,σ2L+,…,σnL+为矩阵SL+(G)的特征值.文章利用不等式讨论单圈图G的Seidel无符号拉普拉斯能量的上界,得到了几个有意义的结果.  相似文献   

16.
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值.  相似文献   

17.
图拟拉普拉斯矩阵的特征值   总被引:3,自引:0,他引:3  
G为有限无向简单图,A(G),D(G)分别表示G的邻接矩阵和度对角矩阵。Q(G)=D(G)+A(G)称为图G的拟拉普拉斯矩阵,它是谱图论的研究对象。本利用G的顶点数,边数,最大度和最小度给出Q(G)的最大特征值和最小特征值的界的估计。  相似文献   

18.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离. 令TrG(vi)书版无此符表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵. 图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

19.
设A(G)为图G的邻接矩阵,D(G)为图G的度对角矩阵,称L(G)=D(G)-A(G)为图G的拉普拉斯矩阵,则特征多项式?G(μ)=det(μI-L(G))的所有根称为图G的拉普拉斯特征值。一个端点的度不小于3,另一个端点的度等于1的路,被称为外部路。对于任意图G,如果G的外部路上包含P3子图,则删除P3不影响图G中拉普拉斯特征值1的重数。通过递归删除外部路上的P3,刻画了不含拉普拉斯特征值1的星型树、双星树和三星树。  相似文献   

20.
图的拉普拉斯谱半径的新上界   总被引:1,自引:1,他引:0  
设D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵,则图G的Laplace矩阵定义为L(G)=D(G)-A(G).利用非负矩阵理论和图论知识给出了两个用图的边数、顶点数,以及顶点的最大度、次大度.最小度表示的L(G)谱半径的新上界,并确定等式成立的极图.最后举例说明这些上界使Laplace谱半径的估计值更小,从而在一定程度上改进了一些文献的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号