首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 812 毫秒
1.
为计算埋地天然气管道泄漏量,获得合理的埋地管道泄漏计算模型与埋地管道土中天然气吸收量,通过分析燃气管道泄漏的模型划分标准,建立等温与等熵模型计算小孔泄漏量。结合天然气管线泄漏强度的实验数据进行对比分析,得出了等熵与等温模型分别为实际小孔泄漏量的上下限;利用菲克定律推导埋地管道泄漏扩散浓度方程,并分析扩散范围,结合工程实例对泄漏量进行计算分析。研究结果表明,小孔泄漏孔径越小,处于爆炸浓度极限的时间越长,危险性越高。根据埋地管道周围土中各点天然气浓度分布规律,提出了土壤吸收量计算方法,改进了地面蒸气云泄漏质量计算方法,结合工程实例定量地给出了土壤的天然气吸收率。  相似文献   

2.
陈兵  赵琼  郭焕焕 《科学技术与工程》2022,22(19):8313-8319
长输管道中的超临界CO2流体一旦发生泄漏并扩散到周围环境中,将会造成极大的经济损失并对生命体构成潜在的生理危害。文章针对不同土壤孔隙率下埋地超临界CO2管道发生小孔泄漏初期的扩散规律展开研究。根据我国土壤特点选用0.35、0.45、0.55、0.65四种孔隙率,结合我国国内某油田超临界CO2埋地管道的输送工况参数,依据相关的基础理论建立三维土壤-管道模型,使用FLUENT专业模拟软件,模拟埋地CO2管道发生泄漏初期CO2在不同孔隙率的土壤中扩散情况,通过分析计算得到其以均匀扩散为主的扩散规律。以所选最大孔隙率为例,以5%为CO2危险浓度,确定以泄漏口为中心的2 m范围内的地表为危险区域,相关结论为施工人员提供技术参考。  相似文献   

3.
包覆层下腐蚀(corrosion-under-insulation,CUI)是一种常见的管道缺陷形式,极易造成管道内物质泄漏,进而引发火灾爆炸及中毒等严重后果。泡沫玻璃作为一种不燃的保冷材料,广泛用于LNG液化装置以及储运设施中,为管道和装置保冷;而在保冷层的覆盖下,管道的腐蚀点很难被发现。在液相裸管管道小孔泄漏试验的基础上,设计试验探究泡沫玻璃保冷层对泄漏压降、泄漏速率、泄漏稳定压力的影响,并建立数学模型进行理论研究,同时利用计算流体力学软件FLUENT对试验模型进行仿真模拟。结果表明:由于泡沫玻璃包覆管道泄漏过程的特殊性导致模拟结果和试验值有所差异,经修正后模拟得到的泄漏速率与试验值达到较好的一致性;仿真结果能够解释和验证泡沫玻璃保冷层对于液相管道小孔泄漏的抑制作用。  相似文献   

4.
贾龙  吴国忠  赵岩  邢畅 《科学技术与工程》2012,12(10):2454-2457
埋地输油管道易发生腐蚀泄漏,同时伴随着巨大的能源损失,并且对管道周围环境造成污染。根据格子Boltzmann方法的并行运算能力强、算法简单、编程容易等特点,针对埋地输油管道两相泄漏过程中流体流动特征以及两相流体间的相互作用,建立埋地输油管道两相泄漏过程的格子Boltzmann模型,并进行格子Boltzmann算法数值计算前期准备工作,确定数值计算步骤及终止准则。  相似文献   

5.
非等温长输管线稳态泄漏计算模型   总被引:9,自引:1,他引:9  
为了客观准确地计算燃气管道泄漏时的泄漏率、泄漏孔口内外温度和压力分布,通过对长输管线微元段燃气压缩因子、摩擦系数、泄漏系数、压力修正系数以及温度修正系数的分析讨论,结合现有泄漏模型,建立了非等温条件下的稳态管道泄漏小孔、管道及大孔模型.对大孔模型泄漏过程,提出了综合三状态模式及具体两状态模式.通过对非等温条件下3种泄漏模型计算结果的比较,得出小孔模型适用于孔径比约为0.15的泄漏,管道模型适用于孔径比约为0.9的泄漏,而大孔模型在各种泄漏孔径下均比较适用,所得计算结果均合理可靠.  相似文献   

6.
埋地管道泄漏三维大地温度场仿真分析   总被引:4,自引:0,他引:4  
考虑管道泄漏后渗流场与温度场耦合,建立了埋地管道泄漏前后的三维大地温度场的物理模型及数学模型,给出了合理的热力学及流体力学边界条件.采用FLUENT软件进行埋地管道泄漏前三维稳态温度场的数值模拟,在此基础上进行了埋地管道发生点泄漏的三维瞬态温度场的数值模拟.研究结果表明:埋地管道泄漏,大地温度场变化非常明显,泄漏点附近形成相当大的泄漏热影响区,该特征为光纤光栅温度传感技术及热红外技术检测埋地管道泄漏提供了理论依据.  相似文献   

7.
为分析城镇LPG管道泄漏扩散规律及其影响因素,建立了重气在大气中泄漏扩散的FLUENT数值模拟模型,并与实验结果进行对比,验证了基于FLUENT的重气扩散数值模拟模型的可行性和准确性。以某城市LPG管道为研究对象,利用RNG k-ε模型,分析了环境风速、障碍物以及城镇地形条件对LPG泄漏事故后果的影响。结果表明,风速的增加造成泄漏源处形成的膨胀云层减小,加剧了LPG在下风向的输运,增大了近地面区域LPG泄漏的危险性。障碍物的宽度越大,迎风面对LPG管道泄漏扩散的阻挡效应愈显著,有利于抑制LPG气云向背风侧近地区域的扩散蔓延,但应注意背风面涡流造成火灾爆炸危险性加剧的现象。当LPG管道在低洼地形和城市高楼间泄漏时,LPG管道泄漏事故危险性急剧增加。  相似文献   

8.
为了降低天然气管道泄漏对环境造成的危害,采用FLUENT软件对高压天然气管道微量泄漏后甲烷扩散特性进行数值模拟,模拟了非稳态时甲烷浓度分布情况;探究不同管道压力和泄漏方式以及不同时间下天然气泄漏扩散过程的变化规律,并通过甲烷浓度分布图分析天然气的扩散特性和区域。结果表明:管内压力越大,甲烷扩散区域越大;泄漏方式为细缝泄漏时,扩散范围就相对小孔泄漏较大;甲烷泄漏出去的扩散浓度变化在前几分钟内就已达到稳定。  相似文献   

9.
针对天然气管道站场中天然气的泄漏扩散对安全生产造成的问题,开展了天然气管道站场中天然气泄漏扩散规律研究.采用专业软件模拟的方法,使用FLACS进行模拟,设置边界条件进行求解,研究不同风速、不同风向及不同泄漏速率对天然气泄漏扩散的影响,并结合天然气行业相关标准对天然气管道站场内可燃性气体位置进行优化.研究结果表明,泄漏速...  相似文献   

10.
针对无裸露埋地输水管道泄漏源定位难度大、精度差的问题,利用声发射技术,基于贪心策略思想与声发射波衰减理论,构建了多传感器融合策略的埋地输水管道泄漏源定位算法。通过搭建埋地输水管道泄漏模拟试验平台,开展埋地输水管道泄漏试验,对泄漏源定位算法进行验证。试验结果表明:该算法应用贪心策略思想优化了泄漏源检测区域,结合声发射多传感器融合分析,实现了埋地输水管道泄漏源精准定位,定位点平均误差为6.52%,定位区域面积占检测面积3.79%。所提出的埋地管道泄漏源定位方法,能够实现输水管道位置未知情况下泄漏源的精确定位,有效提高泄漏源定位的工作效率,可为埋地供水管网泄漏源定位提供理论和方法基础。  相似文献   

11.
输气管道泄漏模型中不确定性因素的分析是影响管道泄漏风险评价不确定的主要原因。为此,在确定起点压力、泄漏孔面积、气体温度和泄漏点距起点距离4项为影响输气管道泄漏速率计算的主要不确定性因素基础上,考虑多因素相互关联、共同影响模型计算精度的问题,采用多因素敏感度整体分析方法分别抽取数量为500,1 000,2 000和3 000的样本各3组,研究各不确定性因素对泄漏速率的影响程度,分析表明,不同样本量下计算得到的各因素Spearman秩相关系数排序基本一致,说明泄漏孔面积对泄漏速率的影响最大,其次是气体温度,起点压力和泄漏点距起点距离对泄漏速率的影响较小;样本数量为500时得到的不确定性因素Spearman秩相关系数排序与样本数量为1 000,2 000和3 000时得到的不确定性因素Spearman秩相关系数排序趋势相同,说明在现有因素取值区间内,抽样数量大于500时的模型计算结果已具备可靠性,能够满足后续风险分析的精度要求。  相似文献   

12.
建立了海底双层输油管道发生泄漏时的物理模型和数学模型.利用Fluent模拟软件,对海底双层输油管道泄漏过程进行二维数值模拟.结果表明:(1)垂直泄漏孔方向,压力逐渐升高,夹层压力传递过程中发生击波现象,击波范围逐渐减小.(2)对应泄漏孔壁面速度几乎为零,沿外壁面上速度最大.随着泄漏时间增加,速度逐渐减小.(3)泄漏最初夹层空间温度较高,泄漏孔压力越大,温度变化越快.  相似文献   

13.
贾玲玲  韩阳 《河南科学》2010,28(7):833-837
场地的不均匀沉陷是导致埋地管线破坏的重要原因之一.目前,有关埋地管线在沉陷情况下的可靠性研究甚少,为了研究埋地管线在沉陷大位移下的可靠度,运用蒙特卡罗法对埋地管线在地面沉陷位移、材料性能参数、内压等随机变量下的可靠度进行计算.同时通过对变量的敏感性分析,发现地面沉陷位移、管线的直径、厚度及管线内压的变异性对计算结果影响较大.增加地面沉陷位移和管线内压将导致管线应力的增加,降低了管线的可靠度,失效概率增大;而增大管线的直径和壁厚将导致管线应力减小,提高了管线的可靠度,失效概率减小.因此减少地面沉陷位移,降低管线内压,增大管线的直径和壁厚有助于提高埋地输油钢管的可靠度.  相似文献   

14.
针对沟埋式管道中的钢塑转换结构件受到土壤载荷作用,容易发生断裂与变形而导致结构件失效,进而导致管道发生泄漏的问题,运用双剪切统一强度理论,推导并建立了适用于刚、柔性埋地管道的垂直土压力计算模型,通过算例对所建模型的有效性进行了分析与验证.研究结果表明:该模型考虑了主应力和回填土的影响,相较于马斯顿理论,该模型计算的压力降低了40%,为直槽沟埋式管道的垂直土压力计算提供一种新方法.  相似文献   

15.
针对大型客机持续不平衡振动叠加装配应力会引发燃油管路泄漏问题,以某一典型发动机机型为研究对象,探讨发动机核心舱空间结构及燃油管路分布,由核心舱燃油泄漏的事故引入,分析核心舱内燃油管路的泄漏形式和泄漏量;基于模型进行油气泄漏的冷态计算,研究裂纹泄漏形式下,泄漏位置对冷态流场的影响;针对裂纹、安装两种泄漏形式,仿真计算油气扩散及流动的情况.结果表明,裂纹泄漏的泄漏量相对较大,泄漏速度较快,并在与空气的掺混下,扩散到机舱内不同部分.而安装泄漏的泄漏量较小,油气泄漏量较小,只在泄漏口附近扩散.管路裂纹泄漏无论泄漏位置在何处,都会在泄漏口出现高速气流及相应的高压区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号