首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Burdyga T  Wray S 《Nature》2005,436(7050):559-562
In excitable tissues the refractory period is a critical control mechanism preventing hyperactivity and undesirable tetani, by preventing subsequent stimuli eliciting action potentials and Ca2+ entry. In ureteric smooth muscle, peristaltic waves that occur as invading pacemaker potentials produce long-lasting action potentials (300-800 ms) and extraordinarily long (more than 10 s) refractory periods, which prevent urine reflux and kidney damage. For smooth muscles neither the mechanisms underlying the refractory period nor the link between excitability and refractoriness are properly understood. Here we show that a negative feedback process, which depends on Ca2+ loading the sarcoplasmic reticulum (SR) during the action potential and on the subsequent activation of local releases of Ca2+ from the SR (sparks), stimulating plasmalemmal Ca2+-sensitive K+ (BK) channels, determines the refractory period of the action potential. As sparks gradually reduce the Ca2+ load in the SR, electrical inhibition is released, the refractory period is terminated and peristaltic contractions occur again. The refractory period can be manipulated, for example from 10 s to 100 s, by altering the Ca2+ content of the SR or release mechanism or by inhibiting BK channels. This insight into the control of excitability and hence function provides a focus for therapies directed at pathologies of smooth muscle.  相似文献   

2.
J S Smith  R Coronado  G Meissner 《Nature》1985,316(6027):446-449
Rapid calcium efflux from the sarcoplasmic reticulum (SR) is a necessary step in excitation-contraction coupling in skeletal muscle and is thought to be mediated by a calcium channel. Calcium efflux has been studied in fragmented SR vesicles by radioisotope efflux and fluorescence measurements. Several laboratories have reported that adenine nucleotides can stimulate calcium efflux from SR. In recent reports, Ca2+ release with a first-order rate constant as high as 100 s-1 has been observed for nucleotide-stimulated Ca2+ release from SR vesicles. Also, radioisotope efflux was blocked by Mg2+ and micromolar concentrations of the polycationic dye, ruthenium red. These high rates of transport are difficult to reconcile with a mechanism other than passive diffusion through a nucleotide-activated 'calcium release channel'. Using the fusion technique for inserting SR proteins into planar lipid bilayers, we report here single-channel recordings of calcium release channels from purified 'heavy' SR membranes. Channels have been identified on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and selectivity for divalent cations. Surprisingly, the channel studied here exhibits an unusually large conductance of 170 pS in 50 mM Ba2+ while still being capable of discriminating against monovalent cations by a permeability ratio, P(Ba)/P(Cs) = 11.4.  相似文献   

3.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

4.
A Fabiato  F Fabiato 《Nature》1979,281(5727):146-148
It has been proposed that the trans-sarcolemmal influx of Ca2+ occurring during the plateau of the mammalian cardiac action potentials is insufficient in itself to activate the myofilaments, but can trigger a release of Ca2+ from the sarcoplasmic reticulum (SR) which is sufficient for activation. The demonstration of this Ca2+-induced release of Ca2+ relied entirely on experiments in which the tension developed by the myofilaments was used as a sensor of the changes of myoplasmic free Ca2+ concentration ([free Ca2+]) in segments of single cardiac cells from which the sarcolemma had been removed by microdissection (skinned cardiac cells). The small size of these preparations has previously prevented the use of more direct methods for the detection of myoplasmic Ca2+ movements. The present study is a direct demonstration of Ca2+-induced release of Ca2+ from the SR of skinned cardiac cells treated with chlorotetracycline (CTC), a fluorescent chelate probe which enables changes in the amount of Ca2+ bound to a variety of biological membranes or micelles to be monitored. The fluorescence increases when more Ca2+ is bound.  相似文献   

5.
Identification of Na-Ca exchange current in single cardiac myocytes   总被引:18,自引:0,他引:18  
S Mechmann  L Pott 《Nature》1986,319(6054):597-599
In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration [( Ca]i) and hence the contractile strength of the heart. Due to its stoichiometry of greater than or equal to 3:1 Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.  相似文献   

6.
肌浆网通过摄取与吸收Ca2+调节细胞内游离Ca2+浓度,在肌肉兴奋-收缩偶联中起重要作用.肌浆网Ca2+摄取主要由Ca2+-Mg2+-ATPase来完成.肌浆网Ca2+释放主要由1,4,5-三磷酸肌醇受体系统和ryanodine受体系统调控.  相似文献   

7.
Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.  相似文献   

8.
It has been proposed that an influx of calcium ions into twitch muscle fibres during an action potential might initiate contraction. However, when external Ca2+ is lowered to 10(-8) M with EGTA, the fibres can produce normal twitches for many minutes. Nevertheless, a clear Ca2+ influx during contraction has been demonstrated, and it has been found that phasic skeletal muscle has an inward calcium current (ICa) which can give rise to calcium spikes. In certain conditions, a reduction in external Ca2+ with 80-90 mM EGTA results in reversible blockade of excitation-contraction (e-c) coupling, leading some authors to suggest that extracellular Ca2+ moved into the myoplasm due to ICa may be involved in the e-c coupling mechanism that triggers contraction. This proposition was further supported by the localization of ICa in the T-system, which circumvented the problem of the delay due to calcium diffusion from the surface membrane. We have now investigated whether ICa has a clear role in initiating or sustaining contractions in twitch muscle fibres. Our approach was to decrease or eliminate ICa with the calcium-blocking agent diltiazem (Herbesser) and to see how the twitch, tetanic and potassium-contracture tensions were affected. We found that ICa could be decreased or cancelled with the calcium-blocking agent, but that the same concentration of the drug potentiated the twitch, tetanus and contractures. We conclude, therefore, that ICa has no role in e-c coupling. A preliminary report of these results has been presented elsewhere.  相似文献   

9.
E Rios  G Brum 《Nature》1987,325(6106):717-720
The transduction of action potential to muscle contraction (E-C coupling) is an example of fast communication between plasma membrane events and the release of calcium from an internal store, which in muscle is the sarcoplasmic reticulum (SR). One theory is that the release channels of the SR are controlled by voltage-sensing molecules or complexes, located in the transverse tubular (T)-membrane, which produce, as membrane voltage varies, 'intramembrane charge movements', but nothing is known about the structure of such sensors. Receptors of the Ca-channel-blocking dihydropyridines present in many tissues, are most abundant in T-tubular muscle fractions from which they can be isolated as proteins. Fewer than 5% of muscle dihydropyridines are functional Ca channels; there is no known role for the remainder in skeletal muscle physiology. We report here that low concentrations of a dihydropyridine inhibit charge movements and SR calcium release in parallel. The effect has a dependence on membrane voltage analogous to that of specific binding of dihydropyridines. We propose specifically that the molecule that generates charge movement is the dihydropyridine receptor.  相似文献   

10.
To investigate the effect of doxorubicin(DOX) on gene expression of the myocardial sarcoplasmic reticulum (SR)Ca^2 transport proteins and the mechanism of taurine(Tau) protecting cardiac muscle cells, 9 rabbits were injected with DOX , 8 rabbits with DOX and Tau, and 9 rabbits with normal saline. Cardiac function , concentration of calcium in cardiomyocytes ( Myo [ Ca^2 ]i ), activity of SR Ca^2 -ATPase (SERCA2a) , level of SERCA2a mRNA and Ca^2 released channels(RYR2) mRNA were detected. The left ventricle tissues were observed by electron microscopy. The results showed that cardiac index, left ventricular systolic pressure, activity of SR Ca^2 -ATPase and level of SERCA2a mRNA decreased , while Myo[ Ca^2 ]i increased in DOX-treated rabbits. DOX could not affect the level of RYR2 mRNA. Tau intervention could alleviate the increase of left ventricular diastolic pressure, Myo[ Ca^2 ] i and the decrease of SERCA2a mRNA induced by doxorubicin. Tile results suggested that downregulation of SERCA2a gene expression was an important mechanism of DOX-induced cardiomyopathy and that Tau could partially improve the heart function by reducing calcium overload and alleviating downregulation of SERCA2a mRNA.  相似文献   

11.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

12.
A functional correlate for the dihydropyridine binding site in rat brain   总被引:11,自引:0,他引:11  
D N Middlemiss  M Spedding 《Nature》1985,314(6006):94-96
Calcium channels, controlling the influx of extracellular Ca2+ and hence neurotransmitter release, exist in the brain. However, drugs classed as calcium antagonists and which inhibit Ca2+ entry through voltage-activated Ca2+ channels in heart and smooth muscle, seem not to affect any aspect of neuronal function in the brain at pharmacologically relevant concentrations. Yet the dihydropyridine calcium antagonists (for example, nitrendipine) bind stereospecifically with high affinity to a recognition site on brain-cell membranes thought to represent the Ca2+ channel and consequently, the physiological relevance of these sites has been questioned. However, activation of voltage-dependent Ca2+ channels can increase cytoplasmic Ca2+ and neurotransmitter release in neuronal tissue. We show here that Bay K8644, a dihydropyridine Ca2+-channel activator, can augment K+-stimulated release of serotonin from rat frontal cortex slices and that these effects can be antagonized by low concentrations of calcium antagonists. As 3H-dihydropyridine binding to cortical membrane preparations resembles the binding in heart and smooth muscle where there are good functional correlates we conclude that the dihydropyridine binding sites in the brain represent functional Ca2+ channels that can be unmasked under certain circumstances.  相似文献   

13.
C Han  P W Abel  K P Minneman 《Nature》1987,329(6137):333-335
Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on alpha 1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction. In many cells activation of alpha 1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates or release of stored intracellular Ca2+ (ref. 3). However, alpha 1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues, and it has been proposed that different alpha 1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx. We here report evidence for two subtypes of alpha 1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.  相似文献   

14.
Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy   总被引:1,自引:0,他引:1  
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.  相似文献   

15.
力竭运动对大鼠骨骼肌肌浆网钙转运的影响   总被引:1,自引:0,他引:1  
采用递增负荷力竭运动方式观察急性运动对肌浆网(SR)钙转运能力的影响,发现运动后股四头肌SR Ca2+-ATPase活性和Ca2+摄取速率均明显下降,表现为SR Ca2+-ATPase活性和Ca2+摄取速率分别下降51.12%(P<0.01)和17.72%(P<0.01);而脂质过氧化物浓度则显著升高,增加48.85%(P<0.01).提示急性运动后SR Ca2+-ATP ase 活性和Ca2+摄取速率下降可能是脂质过氧化增高的结果,而Ca2+摄取功能下降可能与运动性疲劳密切相关.  相似文献   

16.
A M Gurney  P Charnet  J M Pye  J Nargeot 《Nature》1989,341(6237):65-68
The entry of calcium ions into cells through voltage-activated Ca2+ channels in the plasma membrane triggers many important cellular processes. The activity of these channels is regulated by several hormones and neurotransmitters, as well as intracellular messengers such as Ca2+ itself (for examples, see refs 1-9). In cardiac muscle, myoplasmic Ca2+ has been proposed to potentiate Ca2+ influx, although a direct effect of Ca2+ on these channels has not yet been demonstrated. Photosensitive 'caged-Ca2+' molecules such as nitr-5, however, provide powerful tools for investigating possible regulatory roles of Ca2+ on the functioning of Ca2+ channels. Because its affinity for Ca2+ is reduced by irradiation, nitr-5 can be loaded into cells and induced to release Ca2+ with a flash of light. By using this technique we found that the elevation of intracellular Ca2+ concentration directly augmented Ca2+-channel currents in isolated cardiac muscle cells from both frog and guinea pig. The time course of the current potentiation was similar to that seen with beta-adrenergic stimulation. Thus Ca2+ may work through a similar pathway, involving phosphorylation of a regulatory Ca2+-channel protein. This mechanism is probably important for the accumulation of Ca2+ and the amplification of the contractile response in cardiac muscle, and may have a role in other excitable cells.  相似文献   

17.
D A Williams  K E Fogarty  R Y Tsien  F S Fay 《Nature》1985,318(6046):558-561
Calcium is believed to control a variety of cellular processes, often with a high degree of spatial and temporal precision. For a cell to use Ca2+ in this manner, mechanisms must exist for controlling the ion in a localized fashion. We have now gained insight into such mechanisms from studies which measured Ca2+ in single living cells with high resolution using a digital imaging microscope and the highly fluorescent Ca2+-sensitive dye, Fura-2. Levels of Ca2+ in the cytoplasm, nucleus and sarcoplasmic reticulum (SR) are clearly different. Free [Ca2+] in the nucleus and SR was greater than in the cytoplasm and these gradients were abolished by Ca2+ ionophores. When external Ca2+ was raised above normal in the absence of ionophores, free cytoplasmic Ca2+ increased but nuclear Ca2+ did not. Thus, nuclear [Ca2+] appears to be regulated independently of cytoplasmic [Ca2+] by gating mechanisms in the nuclear envelope. The observed regulation of intranuclear Ca2+ in these contractile cells may thus be seen as a way to prevent fluctuation in Ca2+-linked nuclear processes during the rise in cytoplasmic [Ca2+] which triggers contraction. The approach described here offers the opportunity of following changes in Ca2+ in cellular compartments in response to a wide range of stimuli, allowing new insights into the role of local changes in Ca2+ in the regulation of cell function.  相似文献   

18.
P Volpe  G Salviati  F Di Virgilio  T Pozzan 《Nature》1985,316(6026):347-349
The sarcoplasmic reticulum of skeletal muscle is a specialized form of endoplasmic reticulum that controls myoplasmic calcium concentration and, therefore, the contraction-relaxation cycle. Ultrastructural studies have shown that the sarcoplasmic reticulum is a continuous but heterogeneous membranous network composed of longitudinal tubules that surround myofibrils and terminal cisternae. These cisternae are junctionally associated, via bridging structures called 'feet', with sarcolemmal invaginations (the transverse tubules) to form the triadic junction. Following transverse tubule depolarization, a signal, transmitted along the triadic junction, triggers Ca2+ release from terminal cisternae, but the mechanism of this coupling is still unknown. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) has recently been shown to mobilize Ca2+ from intracellular stores, referable to endoplasmic reticulum, in a variety of cell types (see ref. 8 for review), including smooth muscle cells of the porcine coronary artery and canine cardiac muscle cells. Here we show that Ins(1,4,5)P3 releases Ca2+ from isolated, purified sarcoplasmic reticulum fractions of rabbit fast-twitch skeletal muscle, the effect being more pronounced on a fraction of terminal cisternae that contains morphologically intact feet structures; and elicits isometric force development in chemically skinned muscle fibres.  相似文献   

19.
S Rotzler  H Schramek  H R Brenner 《Nature》1991,349(6307):337-339
During formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become metabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days. The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation. We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces metabolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.  相似文献   

20.
Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres   总被引:3,自引:0,他引:3  
M T Nelson  M P Blaustein 《Nature》1981,289(5795):314-316
Calcium ions carry the inward current during depolarization of barnacle muscle fibres and are involved in the contraction process. Intracellular ionized calcium ([Ca2+]i) in barnacle muscle, as in other cells, is kept at a very low concentration, against a large electrochemical gradient. This large gradient is maintained by Ca2+ extrusion mechanisms. When [Ca2+]i is below the contraction threshold, Ca2+ efflux from giant barnacle muscle fibres is, largely, both ATP dependent and external Na+ (Na+0) dependent (see also refs 5,6). When [Ca2+]i is raised to the level expected during muscle contraction (2-5 muM), most of the Ca2+ efflux from perfused fibres is Na0 dependent; as in squid axons, this Na+0-dependent Ca2+ efflux is ATP independent. Orthovanadate is an inhibitor of (Na+ + K+) ATPase and the red cell Ca2+-ATpase. We report here that vanadate inhibits ATP-promoted, Na+0-dependent Ca2+ efflux from barnacle muscle fibres perfused with low [Ca2+]i (0.2-0.5 microM), but has little effect on the Na+0-dependent, ATP-independent Ca2+ efflux from fibres with a high [Ca]i (2-5 microM). Nevertheless, ATP depletion or vanadate treatment of high [Ca2+]i fibres causes an approximately 50-fold increase of Ca2+ efflux into Ca2+-containing lithium seawater. These results demonstrate that both vanadate and ATP affect Ca2+ extrusion, including the Na+0-dependent Ca2+ efflux (Na-Ca exchange), in barnacle muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号