首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulus-secretion coupling in exocrine glands involves Ca2+ release from intracellular stores. In endoplasmic reticulum vesicle preparations from rat exocrine pancreas, an inositol 1,4,5-trisphosphate(InsP3)-sensitive, as well as an InsP3-insensitive, Ca2+ pool has been characterized. But Ca2+ channels in the endoplasmic reticulum of rat exocrine pancreas have not been demonstrated at the level of single-channel current. We have now used the patch-clamp technique on endoplasmic reticulum vesicles fused by means of the dehydration-rehydration method. In excised patches, single Ba2(+)- and Ca2(+)-selective channels were recorded. The channel activity was markedly voltage-dependent. Caffeine increased channel open-state probability, whereas ruthenium red and Cd2+ blocked single-channel currents. Ryanodine, nifedipine and heparin had no effect on channel activity. The channel activity was not dependent on the free Ca2+ concentration, the presence of InsP3, or pH. We conclude that this calcium channel mediates Ca2+ release from an intracellular store through an InsP3-insensitive mechanism.  相似文献   

2.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

3.
Caffeine induces a transient inward current in cultured cardiac cells   总被引:8,自引:0,他引:8  
W T Clusin 《Nature》1983,301(5897):248-250
Electrical excitation of cardiac muscle may sometimes be due to initiation of inward current by the presence of Ca2+ ions at the inner surface of the cell membrane. During digitalis toxicity and other conditions that abnormally augment cellular Ca2+ stores, premature release of Ca2+ from the sarcoplasmic reticulum leads to a transient inward current, which is large enough to initiate premature beats and is accompanied by a transient contractile response. This inward current may be mediated either by electrogenic sodium-calcium exchange or by specific Ca2+-activated cation channels that have recently been characterized in tissue cultures of cardiac myocytes. An obvious question raised by these observations is whether release of the sequestered Ca2+ stores during each normal beat exerts a similar influence on membrane potential. To explore this, chick embryonic myocardial cell aggregates were voltage-clamped during abrupt exposure to caffeine, which is known to release Ca2+ from the sarcoplasmic reticulum. The speed of the perfusion system and the relative absence of diffusion barriers in the tissue-cultured cells allowed the effects of caffeine-induced Ca2+ release to be studied on a time scale comparable to that of a single normal beat. We report here that abrupt exposure of the cells to caffeine produced a transient inward current having similar features to that of digitalis toxicity, and which was both large enough and rapid enough to potentially contribute to the action potential.  相似文献   

4.
C Han  P W Abel  K P Minneman 《Nature》1987,329(6137):333-335
Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on alpha 1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction. In many cells activation of alpha 1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates or release of stored intracellular Ca2+ (ref. 3). However, alpha 1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues, and it has been proposed that different alpha 1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx. We here report evidence for two subtypes of alpha 1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.  相似文献   

5.
P Volpe  G Salviati  F Di Virgilio  T Pozzan 《Nature》1985,316(6026):347-349
The sarcoplasmic reticulum of skeletal muscle is a specialized form of endoplasmic reticulum that controls myoplasmic calcium concentration and, therefore, the contraction-relaxation cycle. Ultrastructural studies have shown that the sarcoplasmic reticulum is a continuous but heterogeneous membranous network composed of longitudinal tubules that surround myofibrils and terminal cisternae. These cisternae are junctionally associated, via bridging structures called 'feet', with sarcolemmal invaginations (the transverse tubules) to form the triadic junction. Following transverse tubule depolarization, a signal, transmitted along the triadic junction, triggers Ca2+ release from terminal cisternae, but the mechanism of this coupling is still unknown. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) has recently been shown to mobilize Ca2+ from intracellular stores, referable to endoplasmic reticulum, in a variety of cell types (see ref. 8 for review), including smooth muscle cells of the porcine coronary artery and canine cardiac muscle cells. Here we show that Ins(1,4,5)P3 releases Ca2+ from isolated, purified sarcoplasmic reticulum fractions of rabbit fast-twitch skeletal muscle, the effect being more pronounced on a fraction of terminal cisternae that contains morphologically intact feet structures; and elicits isometric force development in chemically skinned muscle fibres.  相似文献   

6.
F A Lai  H P Erickson  E Rousseau  Q Y Liu  G Meissner 《Nature》1988,331(6154):315-319
The calcium release channel from rabbit muscle sarcoplasmic reticulum (SR) has been purified and reconstituted as a functional unit in lipid bilayers. Electron microscopy reveals the four-leaf clover structure previously described for the 'feet' that span the transverse tubule (T)-SR junction. Ca2+ release from the SR induced by T-system depolarization during excitation-contraction coupling in muscle may thus be effected through a direct association of the T-system with SR Ca2+-release channels.  相似文献   

7.
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants.  相似文献   

8.
A Lückhoff  D E Clapham 《Nature》1992,355(6358):356-358
Receptor-mediated increases in the cytosolic free calcium ion concentration in most mammalian cells result from mobilization of Ca2+ from intracellular stores as well as transmembrane Ca2+ influx. Inositol 1,4,5-trisphosphate (InsP3) releases calcium from intracellular stores by opening a Ca(2+)-permeable channel in the endoplasmic reticulum. But the mechanism and regulation of Ca2+ entry into nonexcitable cells has remained elusive because the entry pathway has not been defined. Here we characterize a novel inositol 1,3,4,5-tetrakisphosphate (InsP4) and Ca(2+)-sensitive Ca(2+)-permeable channel in endothelial cells. We find that InsP4, which induces Ca2+ influx into acinar cells, enhances the activity of the Ca(2+)-permeable channel when exposed to the intracellular surface of endothelial cell inside-out patches. Our results suggest a molecular mechanism which is likely to be important for receptor-mediated Ca2+ entry.  相似文献   

9.
Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.  相似文献   

10.
S Rotzler  H Schramek  H R Brenner 《Nature》1991,349(6307):337-339
During formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become metabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days. The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation. We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces metabolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.  相似文献   

11.
Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy   总被引:1,自引:0,他引:1  
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.  相似文献   

12.
Wang SQ  Song LS  Lakatta EG  Cheng H 《Nature》2001,410(6828):592-596
Ca2+-induced Ca2+ release is a general mechanism that most cells use to amplify Ca2+ signals. In heart cells, this mechanism is operated between voltage-gated L-type Ca2+ channels (LCCs) in the plasma membrane and Ca2+ release channels, commonly known as ryanodine receptors, in the sarcoplasmic reticulum. The Ca2+ influx through LCCs traverses a cleft of roughly 12 nm formed by the cell surface and the sarcoplasmic reticulum membrane, and activates adjacent ryanodine receptors to release Ca2+ in the form of Ca2+ sparks. Here we determine the kinetics, fidelity and stoichiometry of coupling between LCCs and ryanodine receptors. We show that the local Ca2+ signal produced by a single opening of an LCC, named a 'Ca2+ sparklet', can trigger about 4-6 ryanodine receptors to generate a Ca2+ spark. The coupling between LCCs and ryanodine receptors is stochastic, as judged by the exponential distribution of the coupling latency. The fraction of sparklets that successfully triggers a spark is less than unity and declines in a use-dependent manner. This optical analysis of single-channel communication affords a powerful means for elucidating Ca2+-signalling mechanisms at the molecular level.  相似文献   

13.
Identification of Na-Ca exchange current in single cardiac myocytes   总被引:18,自引:0,他引:18  
S Mechmann  L Pott 《Nature》1986,319(6054):597-599
In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration [( Ca]i) and hence the contractile strength of the heart. Due to its stoichiometry of greater than or equal to 3:1 Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.  相似文献   

14.
Calcium signalling in the guidance of nerve growth by netrin-1   总被引:7,自引:0,他引:7  
Pathfinding by growing axons in the developing nervous system is guided by diffusible or bound factors that attract or repel the axonal growth cone. The cytoplasmic signalling mechanisms that trigger the responses of the growth cone to guidance factors are mostly unknown. Previous studies have shown that the level and temporal patterns of cytoplasmic Ca2+ can regulate the rate of growth-cone extension in vitro and in vivo. Here we report that Ca2+ also mediates the turning behaviour of the growth cones of cultured Xenopus neurons that are induced by an extracellular gradient of netrin-1, an established diffusible guidance factor in vivo. The netrin-1-induced turning response depends on Ca2+ influx through plasma membrane Ca2+ channels, as well as Ca2+-induced Ca2+ release from cytoplasmic stores. Reduction of Ca2+ signals by blocking either of these two Ca2+ sources converted the netrin-1-induced response from attraction to repulsion. Activation of Ca2+-induced Ca2+ release from internal stores with a gradient of ryanodine in the absence of netrin-1 was sufficient to trigger either attractive or repulsive responses, depending on the ryanodine concentration used. These results support the model that cytoplasmic Ca2+ signals mediate growth-cone guidance by netrin-1, and different patterns of Ca2+ elevation trigger attractive and repulsive turning responses.  相似文献   

15.
Excitatory amino acids act via receptor subtypes in the mammalian central nervous system (CNS). The receptor selectively activated by N-methyl-D-aspartic acid (NMDA) has been best characterized using voltage-clamp and single-channel recording; the results suggest that NMDA receptors gate channels that are permeable to Na+, K+ and other monovalent cations. Various experiments suggest that Ca2+ flux is also associated with the activation of excitatory amino-acid receptors on vertebrate neurones. Whether Ca2+ enters through voltage-dependent Ca2+ channels or through excitatory amino-acid-activated channels of one or more subtype is unclear. Mg2+ can be used to distinguish NMDA-receptor-activated channels from voltage-dependent Ca2+ channels, because at micromolar concentrations Mg2+ has little effect on voltage-dependent Ca2+ channels while it enters and blocks NMDA receptor channels. Marked differences in the potency of other divalent cations acting as Ca2+ channel blockers compared with their action as NMDA antagonists also distinguish the NMDA channel from voltage-sensitive Ca2+ channels. However, we now directly demonstrate that excitatory amino acids acting at NMDA receptors on spinal cord neurones increase the intracellular Ca2+ activity, measured using the indicator dye arsenazo III, and that this is the result of Ca2+ influx through NMDA receptor channels. Kainic acid (KA), which acts at another subtype of excitatory amino-acid receptor, was much less effective in triggering increases in intracellular free Ca2+.  相似文献   

16.
A rapid, transient rise in the free cytosolic Ca2+ concentration ([Ca2+]i) is one of the earliest events in neutrophil activation and is assumed to be involved in many of the subsequent cellular reactions. Both Ca2+ release from intracellular stores and Ca2+ influx from the extracellular space contribute to the rise in [Ca2+]i. In an attempt to assess the relative importance of these pools and the sequences leading to the rise in [Ca2+]i, we have studied the time course of changes in [Ca2+]i after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or platelet-activating factor (PAF) using the Ca2+ indicators quin-2 and fura-2. We observed a time lag of 1-3 s between stimulation and rise in [Ca2+]i. This lag depends on the agonist concentration but is independent of extracellular Ca2+. Thus Ca2+ release from intracellular stores is rate limiting for the rise in [Ca2+]i. After this, cation channels in the plasma membrane (measured with the patch clamp method) are opened. These non-selective channels, which also pass Ca2+, are activated by the initial rise in [Ca2+]i, but by neither fMLP nor inositol 1,4,5-trisphosphate (IP3) directly.  相似文献   

17.
A Fabiato  F Fabiato 《Nature》1979,281(5727):146-148
It has been proposed that the trans-sarcolemmal influx of Ca2+ occurring during the plateau of the mammalian cardiac action potentials is insufficient in itself to activate the myofilaments, but can trigger a release of Ca2+ from the sarcoplasmic reticulum (SR) which is sufficient for activation. The demonstration of this Ca2+-induced release of Ca2+ relied entirely on experiments in which the tension developed by the myofilaments was used as a sensor of the changes of myoplasmic free Ca2+ concentration ([free Ca2+]) in segments of single cardiac cells from which the sarcolemma had been removed by microdissection (skinned cardiac cells). The small size of these preparations has previously prevented the use of more direct methods for the detection of myoplasmic Ca2+ movements. The present study is a direct demonstration of Ca2+-induced release of Ca2+ from the SR of skinned cardiac cells treated with chlorotetracycline (CTC), a fluorescent chelate probe which enables changes in the amount of Ca2+ bound to a variety of biological membranes or micelles to be monitored. The fluorescence increases when more Ca2+ is bound.  相似文献   

18.
A Sp?t  P G Bradford  J S McKinney  R P Rubin  J W Putney 《Nature》1986,319(6053):514-516
Several receptors for neurotransmitters, hormones and growth factors cause accelerated phosphodiesteratic breakdown of polyphosphoinositides when activated. One of the soluble products of this reaction, inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) is thought to act as a second messenger signalling the release of Ca2+ from intracellular stores. In support of this hypothesis, several studies have shown that Ins(1,4,5)P3 releases sequestered Ca2+ from permeable cells and microsomes. On the basis of certain structural requirements for Ca2+-releasing activity by inositol phosphates, it has been postulated that Ins(1,4,5)P3 acts by binding to a specific intracellular receptor, probably on a component of the endoplasmic reticulum. Here we report that 32P-Ins(1,4,5)P3 binds to a specific saturable site in permeabilized guinea pig hepatocytes and rabbit neutrophils, and that the properties of this binding site suggest that it is the physiological receptor for Ins(1,4,5)P3.  相似文献   

19.
J S Smith  R Coronado  G Meissner 《Nature》1985,316(6027):446-449
Rapid calcium efflux from the sarcoplasmic reticulum (SR) is a necessary step in excitation-contraction coupling in skeletal muscle and is thought to be mediated by a calcium channel. Calcium efflux has been studied in fragmented SR vesicles by radioisotope efflux and fluorescence measurements. Several laboratories have reported that adenine nucleotides can stimulate calcium efflux from SR. In recent reports, Ca2+ release with a first-order rate constant as high as 100 s-1 has been observed for nucleotide-stimulated Ca2+ release from SR vesicles. Also, radioisotope efflux was blocked by Mg2+ and micromolar concentrations of the polycationic dye, ruthenium red. These high rates of transport are difficult to reconcile with a mechanism other than passive diffusion through a nucleotide-activated 'calcium release channel'. Using the fusion technique for inserting SR proteins into planar lipid bilayers, we report here single-channel recordings of calcium release channels from purified 'heavy' SR membranes. Channels have been identified on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and selectivity for divalent cations. Surprisingly, the channel studied here exhibits an unusually large conductance of 170 pS in 50 mM Ba2+ while still being capable of discriminating against monovalent cations by a permeability ratio, P(Ba)/P(Cs) = 11.4.  相似文献   

20.
Glucose-stimulated insulin secretion is associated with the appearance of electrical activity in the pancreatic beta-cell. At intermediate glucose concentrations, beta-cell electrical activity follows a characteristic pattern of slow oscillations in membrane potential on which bursts of action potentials are superimposed. The electrophysiological background of the bursting pattern remains unestablished. Activation of Ca(2+)-activated large-conductance K+ channels (KCa channel) has been implicated in this process but seems unlikely in view of recent evidence demonstrating that the beta-cell electrical activity is unaffected by the specific KCa channel blocker charybdotoxin. Another hypothesis postulates that the bursting arises as a consequence of two components of Ca(2+)-current inactivation. Here we show that activation of a novel Ca(2+)-dependent K+ current in glucose-stimulated beta-cells produces a transient membrane repolarization. This interrupts action potential firing so that action potentials appear in bursts. Spontaneous activity of this current was seen only rarely but could be induced by addition of compounds functionally related to hormones and neurotransmitters present in the intact pancreatic islet. K+ currents of the same type could be evoked by intracellular application of GTP, the effect of which was mediated by mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores. These observations suggest that oscillatory glucose-stimulated electrical activity, which is correlated with pulsatile release of insulin, results from the interaction between the beta-cell and intraislet hormones and neurotransmitters. Our data also provide evidence for a close interplay between ion channels in the plasma membrane and InsP3-induced mobilization of intracellular Ca2+ in an excitable cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号