首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Na-Ca exchange current in mammalian heart cells   总被引:27,自引:0,他引:27  
J Kimura  A Noma  H Irisawa 《Nature》1986,319(6054):596-597
Electrogenic Na-Ca exchange has been known to act in the cardiac sarcolemma as a major mechanism for extruding Ca ions. Ionic flux measurements in cardiac vesicles have recently suggested that the exchange ratio is probably 3 Na:1 Ca, although a membrane current generated by such a process has not been isolated. Using the intracellular perfusion technique combined with the whole-cell voltage clamp, we were able to load Na+ inside and Ca2+ outside the single ventricular cells of the guinea pig and have succeeded in recording an outward Na-Ca exchange current while blocking most other membrane currents. The current is voltage-dependent, blocked by La3+ and does not develop in the absence of intracellular free Ca2+. This report presents the first direct measurement of the cardiac Na-Ca exchange current, and should facilitate the study of Ca2+ fluxes during cardiac activity, together with various electrical changes attributable to the Na-Ca exchange and the testing of proposed models.  相似文献   

2.
Electrogenic Na-Ca exchange in retinal rod outer segment   总被引:7,自引:0,他引:7  
K W Yau  K Nakatani 《Nature》1984,311(5987):661-663
Previous work has suggested that a Na-Ca exchanger may have a key role in visual transduction in retinal rods. This exchanger is thought to maintain a low internal free Ca2+ concentration in darkness and to contribute to the rod's recovery after light by removing any internally released Ca2+. Little else is known about this transport mechanism in rods. We describe here an inward membrane current recorded from single isolated rods which appears to be associated with such external Na+-dependent Ca2+ efflux activity. External Na+, but not Li+, could generate this current; high external K+ inhibited it while small amounts of La3+ (10 microM) completely abolished it. The exchanger can also transport Sr2+, but not Ba2+ or other divalent cations. The exchange ratio was estimated to be 3Na+:1Ca2+. As well as demonstrating clearly the Na-Ca exchanger in the rod outer segment, our experiments also cast serious doubt on the commonly held view that light simply releases internal Ca2+ to bind to and block the light-sensitive conductance.  相似文献   

3.
L M Crespo  C J Grantham  M B Cannell 《Nature》1990,345(6276):618-621
Compelling evidence has existed for more than a decade for a sodium/calcium (Na-Ca) exchange mechanism in the surface membrane of mammalian heart muscle cells which exchanges about three sodium ions for each calcium ion. Although it is known that cardiac muscle contraction is regulated by a transient increase in intracellular calcium ([Ca2+]i) triggered by the action potential, the contribution of the Na-Ca exchanger to the [Ca2+]i transient and to calcium extrusion during rest is unclear. To clarify these questions, changes in [Ca2+]i were measured with indo-1 in single cardiac myocytes which were voltage clamped and dialysed with a physiological level of sodium. We find that Ca entry through the Na-Ca exchanger is too slow to affect markedly the rate of rise of the normal [Ca2+]i transient. On repolarization, Ca extrusion by the exchanger causes [Ca2+]i to decline with a time constant of 0.5 s at -80 mV. The rate of decline can be slowed e-fold with a 77-mV depolarization. Calcium extrusion by the exchanger can account for about 15% of the rate of decline of the [Ca2+]i transient (the remainder being calcium resequestration by the sarcoplasmic reticulum (SR]. The ability of the cell to extrude calcium was greatly reduced on inhibiting the exchanger by removing external sodium, which itself led to an increase in resting [Ca2+]i. This finding is in contrast to the suggestion that calcium extrusion at rest is mediated mainly by a sarcolemmal Ca-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Kang TM  Hilgemann DW 《Nature》2004,427(6974):544-548
The cardiac Na+/Ca2+ exchanger (NCX1; ref. 2) is a bi-directional Ca2+ transporter that contributes to the electrical activity of the heart. When, and if, Ca2+ is exported or imported depends on the Na+/Ca2+ exchange ratio. Whereas a ratio of 3:1 (Na+:Ca2+) has been indicated by Ca2+ flux equilibrium studies, a ratio closer to 4:1 has been indicated by exchange current reversal potentials. Here we show, using an ion-selective electrode technique to quantify ion fluxes in giant patches, that ion flux ratios are approximately 3.2 for maximal transport in either direction. With Na+ and Ca2+ on both sides of the membrane, net current and Ca2+ flux can reverse at different membrane potentials, and inward current can be generated in the absence of cytoplasmic Ca2+, but not Na+. We propose that NCX1 can transport not only 1 Ca2+ or 3 Na+ ions, but also 1 Ca2+ with 1 Na+ ion at a low rate. Therefore, in addition to the major 3:1 transport mode, import of 1 Na+ with 1 Ca2+ defines a Na+-conducting mode that exports 1 Ca2+, and an electroneutral Ca2+ influx mode that exports 3 Na+. The two minor transport modes can potentially determine resting free Ca2+ and background inward current in heart.  相似文献   

5.
W Siffert  J W Akkerman 《Nature》1987,325(6103):456-458
Stimulated platelets take up sodium ions and release hydrogen ions due to activation of Na+/H+ exchange resulting in cytoplasmic alkalinization. Suppression of Na+/H+ exchange either by removal of extracellular Na+ or by application of amiloride inhibits shape change, secretion of granule contents and aggregation. The data we present here indicate that inhibition of this transport by ethylisopropyl-amiloride or by lowering extracellular sodium reduces or even completely suppresses the rise in cytoplasmic free Ca2+ concentration that is essential for platelet aggregation in response to thrombin. We also demonstrate that cytoplasmic alkalinization produced by exposure to the ionophore monensin sensitizes the human platelet response to stimulation by thrombin resulting in enhanced Ca2+ mobilization and aggregability. We conclude that an increase in intracellular pH evoked by activation of Na+/H+ counter transport is an important signal in stimulus-response coupling and forms an essential step in the cascade of events required to increase cytoplasmic free Ca2+ in platelets.  相似文献   

6.
D W Hilgemann  D A Nicoll  K D Philipson 《Nature》1991,352(6337):715-718
Na+/Ca2+ exchange is electrogenic and moves one net positive charge per cycle. Although the cardiac exchanger has a three-to-one Na+/Ca2+ stoichiometry, details of the reaction cycle are not well defined. Here we associate Na+ translocation by the cardiac exchanger with positive charge movement in giant membrane patches from cardiac myocytes and oocytes expressing the cloned cardiac Na+/Ca2+ exchanger. The charge movements are initiated by step increments of the cytoplasmic Na+ concentration in the absence of Ca2+. Giant patches from control oocytes lack both steady-state Na+/Ca2+ exchange current (INaCa) and Na(+)-induced charge movements. Charge movements indicate about 400 exchangers per micron 2 in guinea-pig sarcolemma. Fully activated INaCa densities (20-30 microA cm-2) indicate maximum turnover rates of 5,000 s-1. As has been predicted for consecutive exchange models, the apparent ion affinities of steady state INaCa increase as the counterion concentrations are decreased. Consistent with an electroneutral Ca2+ translocation, we find that voltage dependence of INaCa in both directions is lost as Ca2+ concentration is decreased. The principal electrogenic step seems to be at the extracellular end of the Na+ translocation pathway.  相似文献   

7.
Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres   总被引:3,自引:0,他引:3  
M T Nelson  M P Blaustein 《Nature》1981,289(5795):314-316
Calcium ions carry the inward current during depolarization of barnacle muscle fibres and are involved in the contraction process. Intracellular ionized calcium ([Ca2+]i) in barnacle muscle, as in other cells, is kept at a very low concentration, against a large electrochemical gradient. This large gradient is maintained by Ca2+ extrusion mechanisms. When [Ca2+]i is below the contraction threshold, Ca2+ efflux from giant barnacle muscle fibres is, largely, both ATP dependent and external Na+ (Na+0) dependent (see also refs 5,6). When [Ca2+]i is raised to the level expected during muscle contraction (2-5 muM), most of the Ca2+ efflux from perfused fibres is Na0 dependent; as in squid axons, this Na+0-dependent Ca2+ efflux is ATP independent. Orthovanadate is an inhibitor of (Na+ + K+) ATPase and the red cell Ca2+-ATpase. We report here that vanadate inhibits ATP-promoted, Na+0-dependent Ca2+ efflux from barnacle muscle fibres perfused with low [Ca2+]i (0.2-0.5 microM), but has little effect on the Na+0-dependent, ATP-independent Ca2+ efflux from fibres with a high [Ca]i (2-5 microM). Nevertheless, ATP depletion or vanadate treatment of high [Ca2+]i fibres causes an approximately 50-fold increase of Ca2+ efflux into Ca2+-containing lithium seawater. These results demonstrate that both vanadate and ATP affect Ca2+ extrusion, including the Na+0-dependent Ca2+ efflux (Na-Ca exchange), in barnacle muscle.  相似文献   

8.
E Niggli  W J Lederer 《Nature》1991,349(6310):621-624
The sodium-calcium exchanger is critical in the normal functioning of many cells. In heart muscle, it is the principal way by which the cells keep the concentration of intracellular calcium low, pumping out the Ca2+ that enters the cytosol through L-type Ca2+ channels. The exchanger may also contribute to the triggering of Ca2+ release during voltage-activated excitation-contraction coupling in heart. Time resolved examination of the conformational changes of macromolecules in living cells has so far been largely restricted to ion-channel proteins whose gating is voltage-dependent. We have now directly measured electrical currents arising from the molecular rearrangements of the sarcolemmal Na-Ca exchanger. Changes in the conformation of the exchanger protein were activated by a rapid increase in the intracellular calcium concentration produced by flash photolysis of caged calcium in voltage-clamped heart cells. Two components of membrane current were produced, reflecting a calcium-dependent conformational change of the transporter proteins and net transport of ions by the exchanger. The properties of these components provide evidence that the Na-Ca exchanger protein undergoes two consecutive membrane-crossing molecular transitions that each move charge, and that there are at least 250 exchangers per micron 2 turning over up to 2,500 times per second.  相似文献   

9.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   

10.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

11.
Oscillations of intracellular Ca2+ in mammalian cardiac muscle   总被引:2,自引:0,他引:2  
C H Orchard  D A Eisner  D G Allen 《Nature》1983,304(5928):735-738
Contraction of cardiac muscle depends on a transient rise of intracellular calcium concentration ([Ca2+]i) which is initiated by the action potential. It has, however, also been suggested that [Ca2+]i can fluctuate in the absence of changes in membrane potential. The evidence for this is indirect and comes from observations of (1) fluctuations of contractile force in intact cells, (2) spontaneous cellular movements, and (3) spontaneous contractions in cells which have been skinned to remove the surface membrane. The fluctuations in force are particularly prominent when the cell is Ca2+-loaded, and have been attributed to a Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. In these conditions of Ca2+-loading the normal cardiac contraction is followed by an aftercontraction which has been attributed to the synchronization of the fluctuations. The rise of [Ca2+]i which is thought to underlie the aftercontraction also produces a transient inward current. This current, which probably results from a Ca2+-activated nonspecific cation conductance, has been implicated in the genesis of various cardiac arrhythmias. However, despite the potential importance of such fluctuations of [Ca2+]i their existence has, so far, only been inferred from tension measurements. Here we present direct measurements of such oscillations of [Ca2+]i.  相似文献   

12.
B J Bacskai  P A Friedman 《Nature》1990,347(6291):388-391
Calcium has an important role in regulating epithelial cell ion transport and is itself transported by tissues involved in the maintenance of extracellular Ca2+ homeostasis. Although the mechanism of Ca2+ entry in electrically excitable cells is well-documented little is known about it in epithelial cells. Calcium absorption in polarized epithelial cells is a two-step process in which Ca2+ enters cells across apical plasma membranes and is extruded across basolateral membranes. Efflux may be mediated by an energy-dependent Ca2(+)-ATPase or by Na+/Ca2+ exchange. We examined Ca2+ influx in single cultured cells from distal renal tubules sensitive to parathyroid hormone by measuring intracellular Ca2+. Our results demonstrate that parathyroid hormone activates dihydropyridine-sensitive channels responsible for Ca2+ entry. We also show that microtubule-dependent exocytosis stimulated by parathyroid hormone may be necessary for the insertion or activation of Ca2+ channels in these cells. Once inserted or activated, dihydropyridine-sensitive channels mediate Ca2+ entry into these Ca2(+)-transporting epithelial cells. Our results support the view that agonist-induced exocytosis may represent a general paradigm for modulation of transport in epithelial cells by delivery and incorporation of transport proteins to plasma membranes or by delivery to plasma membranes of factors regulating these proteins.  相似文献   

13.
J H Kaplan  R J Hollis 《Nature》1980,288(5791):587-589
Coupled active transport of Na+ and K+ across cellular plasma membranes is mediated by (Na+ + K+)-stimulated Mg2+-dependent ATPase. Active cation transport by this Na pump involves a cyclic Na-dependent phosphorylation of the enzyme by intracellular ATP and hydrolytic dephosphorylation of the phosphoenzyme, stimulated by K+ (ref. 1). In human red blood cells, skeletal muscle and squid axons, replacement of extracellular K by Na results in a ouabain-sensitive efflux of Na coupled to an influx of extracellular Na. There is apparently no net Na movement nor net hydrolysis of ATP. The rate of Na:Na exchange is stimulated by increased levels of ADP and exchange transport is not observed in cells totally depleted of intracellular ATP. These characteristics suggest that the biochemical mechanism underlying the Na exchange mode of the Na pump involves phosphorylation of the enzyme by ATP (which requires intracellular Na) followed by its dephosphorylation by ADP. Such a reaction has been observed in partially purified (Na+ + K+) ATPase from a variety of sources and its dependence on Na concentration has been described (although not previously for the red cell enzyme). In the present work, intracellular ATP:ADP exchange reaction was initiated by photoreleased ATP following brief irradiation at 350 nm of ghosts containing caged-ATP. The ouabain-sensitive component of the ensuing ATP:ADP exchange reaction shows a biphasic response to extracellular Na. External Na in the range 0--10 mM has an inhibitory effect whilst increasing concentrations beyond this range stimulate the rate of exchange in a roughly linear fashion up to 100 mM Na. These results represent the first direct demonstration of the sidedness of the effects of Na on this partial sequence in the overall enzyme cycle and bear a qualitative resemblance to the Na effects on the Na-ATPase which occur in the absence of intracellular ADP in human red blood cells.  相似文献   

14.
A rapid, transient rise in the free cytosolic Ca2+ concentration ([Ca2+]i) is one of the earliest events in neutrophil activation and is assumed to be involved in many of the subsequent cellular reactions. Both Ca2+ release from intracellular stores and Ca2+ influx from the extracellular space contribute to the rise in [Ca2+]i. In an attempt to assess the relative importance of these pools and the sequences leading to the rise in [Ca2+]i, we have studied the time course of changes in [Ca2+]i after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or platelet-activating factor (PAF) using the Ca2+ indicators quin-2 and fura-2. We observed a time lag of 1-3 s between stimulation and rise in [Ca2+]i. This lag depends on the agonist concentration but is independent of extracellular Ca2+. Thus Ca2+ release from intracellular stores is rate limiting for the rise in [Ca2+]i. After this, cation channels in the plasma membrane (measured with the patch clamp method) are opened. These non-selective channels, which also pass Ca2+, are activated by the initial rise in [Ca2+]i, but by neither fMLP nor inositol 1,4,5-trisphosphate (IP3) directly.  相似文献   

15.
Voltage dependence of Na/K pump current in isolated heart cells   总被引:8,自引:0,他引:8  
D C Gadsby  J Kimura  A Noma 《Nature》1985,315(6014):63-65
The Na/K pump usually pumps more Na+ out of the cell than K+ in, and so generates an outward component of membrane current which, in the heart, can be an important modulator of the frequency and shape of the cardiac impulse. Because it is electrogenic, Na/K pump activity ought to be sensitive to membrane potential, and it should decline with hyperpolarization. However, such voltage dependence of outward pump current has yet to be demonstrated, one reason being the technical difficulty of accurately measuring pump current over a sufficiently wide voltage range. The whole-cell patch-clamp technique allows effective control of both intracellular and extracellular solutions as well as membrane voltage. Applying this technique to myocardial cells isolated from guinea pig ventricle, we have measured Na/K pump current between -140 mV and +60 mV, after minimizing passive currents flowing through Ca2+, K+ and Na+ channels. We report here that strongly activated pump current shows marked voltage dependence; it declines steadily from a maximal level near 0 mV, becoming very small at -140 mV. Pump current-voltage relationships will provide essential information for testing models of the Na/K pump mechanism and for predicting pump-mediated changes in the electrical activity of excitable cells.  相似文献   

16.
Caffeine induces a transient inward current in cultured cardiac cells   总被引:8,自引:0,他引:8  
W T Clusin 《Nature》1983,301(5897):248-250
Electrical excitation of cardiac muscle may sometimes be due to initiation of inward current by the presence of Ca2+ ions at the inner surface of the cell membrane. During digitalis toxicity and other conditions that abnormally augment cellular Ca2+ stores, premature release of Ca2+ from the sarcoplasmic reticulum leads to a transient inward current, which is large enough to initiate premature beats and is accompanied by a transient contractile response. This inward current may be mediated either by electrogenic sodium-calcium exchange or by specific Ca2+-activated cation channels that have recently been characterized in tissue cultures of cardiac myocytes. An obvious question raised by these observations is whether release of the sequestered Ca2+ stores during each normal beat exerts a similar influence on membrane potential. To explore this, chick embryonic myocardial cell aggregates were voltage-clamped during abrupt exposure to caffeine, which is known to release Ca2+ from the sarcoplasmic reticulum. The speed of the perfusion system and the relative absence of diffusion barriers in the tissue-cultured cells allowed the effects of caffeine-induced Ca2+ release to be studied on a time scale comparable to that of a single normal beat. We report here that abrupt exposure of the cells to caffeine produced a transient inward current having similar features to that of digitalis toxicity, and which was both large enough and rapid enough to potentially contribute to the action potential.  相似文献   

17.
C Han  P W Abel  K P Minneman 《Nature》1987,329(6137):333-335
Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on alpha 1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction. In many cells activation of alpha 1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates or release of stored intracellular Ca2+ (ref. 3). However, alpha 1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues, and it has been proposed that different alpha 1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx. We here report evidence for two subtypes of alpha 1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.  相似文献   

18.
T J Allen  P F Baker 《Nature》1985,315(6022):755-756
Until recently, intracellular free calcium has been amenable to measurement and investigation only in cells large enough to permit either microinjection of a suitable Ca sensor such as a aequorin or arsenazo III or insertion of a Ca-sensitive microelectrode. This constraint on cell size was removed by the development of the fluorescent Ca2+ -sensitive dye Quin-2 and its acetoxymethyl ester, which can be introduced into a wide range of cell types. A major requirement of any intracellular Ca2+ indicator is that it should not disturb intracellular Ca2+ homeostasis and Quin-2 is generally considered to be satisfactory in this respect. We now report that injection of Quin-2 into squid (Loligo forbesi) axons can almost completely abolish one component of Ca2+ entry--intracellular Na+ (Nai)-dependent Ca2+ inflow, which occurs via Na/Ca exchange. Mixtures of Ca and Quin-2 that buffer an ionized Ca2+ at close to physiological concentrations also block Nai-dependent Ca2+ influx but these same mixtures fail to block the extracellular Na+ (Na0)-dependent extrusion of Ca2+, showing that Quin-2 acts specifically on Ca2+ inflow.  相似文献   

19.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

20.
A Fabiato  F Fabiato 《Nature》1979,281(5727):146-148
It has been proposed that the trans-sarcolemmal influx of Ca2+ occurring during the plateau of the mammalian cardiac action potentials is insufficient in itself to activate the myofilaments, but can trigger a release of Ca2+ from the sarcoplasmic reticulum (SR) which is sufficient for activation. The demonstration of this Ca2+-induced release of Ca2+ relied entirely on experiments in which the tension developed by the myofilaments was used as a sensor of the changes of myoplasmic free Ca2+ concentration ([free Ca2+]) in segments of single cardiac cells from which the sarcolemma had been removed by microdissection (skinned cardiac cells). The small size of these preparations has previously prevented the use of more direct methods for the detection of myoplasmic Ca2+ movements. The present study is a direct demonstration of Ca2+-induced release of Ca2+ from the SR of skinned cardiac cells treated with chlorotetracycline (CTC), a fluorescent chelate probe which enables changes in the amount of Ca2+ bound to a variety of biological membranes or micelles to be monitored. The fluorescence increases when more Ca2+ is bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号