首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

3.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

4.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

5.
6.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

7.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

8.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

9.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

10.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

11.
首次将元胞自动机(Cellular Automata, CA)方法和有限差分法结合起来,建立了连铸坯凝固时内部等轴晶和柱状晶的随机形核和晶粒生长模型。结合某钢厂实际生产情况,对实际工况下连铸坯凝固组织进行模拟,再现了连铸坯内部组织的演变规律,发现晶粒呈现等轴晶〖XC半字线.tif,JZ〗柱状晶〖XC半字线.tif,JZ〗等轴晶的转变,以及不同工艺制度下3个晶层的厚度情况,表面激冷层和中心等轴晶层厚度随拉速增加而减小,随下钢水过热度降低而增大,但柱状晶层厚度却随拉速和钢水过热度的增加而增加。仿真结果对晶粒的随机形核、晶粒的择优生长、竞争生长以及晶粒的随机取向都有比较好的体现。  相似文献   

12.
采用金相、扫描电镜及能谱分析了连铸方坯中心位置的宏观和微观特征.发现偏析是导致中心裂纹产生的主要原因,裂纹发生在柱状晶末端和粗大等轴晶区,沿一次枝晶晶界展开;开裂方式为沿晶开裂,开裂时期处于液相.存在两种晶界偏析,一种为析出的MnS夹杂物,另一种为聚集的浓化钢液.中心位置析出物未达到非调质钢质量要求.  相似文献   

13.
采用基于Eulerian-Eulerian方法和合金凝固理论的液相-柱状晶-等轴晶三相凝固模型,对立式连铸工艺中结晶器内的凝固过程进行了研究.对比焓-多孔介质凝固模型,除热溶质浮升力导致的熔体流动,该三相凝固模型还考虑了柱状晶组织的生长、等轴晶组织的形成和演变以及游离等轴晶粒的沉浮,揭示了等轴晶沉降漂移作用对宏观溶质传输及凝固组织分布的影响.模拟结果显示铸坯中心处由等轴晶粒沉积形成的富等轴晶区存在溶质负偏析,紧邻该负偏析区域存在带状偏析区域.随着钢液过热度增加,等轴晶分布减少,中心处宏观偏析加重.  相似文献   

14.
A new theory of two-phase zone continuous casting(TZCC) has been established in order to improve mechanical properties,corrosion resistance and conductivity properties of metals with wide solid-liquid two-phase zone.A Cu-Sn alloy with continuous columnar grains-covered non-columnar small grains of same phase microstructure containing many self-closed grain boundaries were produced by the self-developed TZCC process.Compared with water-cooled mold continuous casting Cu-Sn alloy,the tensile strength and ductility of the TZCC alloy are greatly improved,the corrosion resistance is improved up to fifteenfold,and the conductivity is improved by 12.2%.The excellent high strength may be due to the effective blockage of dislocation motion by numerous self-closed grain boundaries,which suppress the propagation of grain boundary corrosion,and the extremely low electrical resistivity and high ductility may be attributed to continuous columnar grains.  相似文献   

15.
高速列车车厢用的铝合金板焊接接头的组织与性能   总被引:3,自引:1,他引:2  
利用光学显微镜和透射电子显微镜研究了国产7020铝合金熔化极惰性气体保护焊(MIG)接头的微观组织结构,并对接头的力学性能进行研究.结果表明,接头的硬度以焊缝中心线为轴呈对称分布,且焊缝中心为接头的最薄弱环节;焊缝区为典型的树枝状晶的铸造组织.在熔合区,焊缝一侧为沿散热方向排列的柱状晶,另一侧为细小的等轴晶组织.热影响区内,仍可见纤维状加工痕迹,部分析出相固溶到基体中;强化相的粗化,是热影响区内出现软化区的主要原因.国产7020铝合金焊接接头强度达到欧洲标准.  相似文献   

16.
为了确定薄带连铸AISI304不锈钢凝固过程中残留铁素体的生成及转变行为,采用彩色金相、电解侵蚀、电子背散射衍射分析技术及X射线衍射分析等研究手段对双辊薄带连铸AISI304不锈钢凝固组织及残留铁素体特征进行了研究.结果表明AISI304不锈钢薄带的凝固组织由表层胞状晶区、中间柱状晶区和中心等轴晶区三部分组成.薄带表层胞状晶区内残留铁素体呈棒状,柱状晶区的残留铁素体形态为鱼骨状,中心等轴晶区的残留铁素体呈弯曲的树枝状;薄带的表层胞状晶区残留铁素体的质量分数为4.6%~6.6%,柱状晶区内的残留铁素体质量分数为3.6%~3.7%,中心等轴晶区内的残留铁素体质量分数为11.27%~11.34%;残留铁素体沿着厚度方向呈现"W"状分布.  相似文献   

17.
基于中原特钢股份有限公司立式连铸工艺与CAFE形核理论,建立了Φ600 mm 35CrMo钢立式连铸圆坯传热凝固耦合模型,采用薄片移动边界法对圆坯宏观组织进行数值模拟,分析了钢液浇注过热度和二冷水制度对宏观组织的影响,并在现场进行了Φ600 mm 35CrMo钢圆坯的连铸生产。结果表明:圆坯宏观组织形貌模拟结果与现场低倍组织相一致,过热度为40℃时中心等轴晶率为29.16%。当过热度由30℃升高到50℃时,晶粒数由9 332个减小到7 155个,降低了23.33%;晶粒平均半径由1 302μm增大到1 622μm,增大了24.58%;中心等轴晶率由35.75%减小到21.13%。当冷却强度由弱冷变为强冷时,晶粒数由9 391个减小到7 228个,晶粒平均半径由1 259μm增大到1 576μm,中心等轴晶率由36.05%减小到23.04%。  相似文献   

18.
双辊薄带连铸柱状晶组织模拟   总被引:6,自引:0,他引:6  
鉴于双辊薄带连铸等轴晶区半固态铸轧组织对产品性能的重要性,应用Calcosoft软件中的FE-CA方法对薄带柱状晶组织进行模拟,模拟结果与实验结果基本吻合,实现了柱状晶区的可视化. 应用建立的微观组织模型,研究了三种工艺参数对柱状晶区宽度的影响. 结果表明:随着熔池液面高度的增加,薄带柱状晶区宽度增加;随着浇铸温度和铸辊转速的增加,薄带柱状晶区宽度减小.  相似文献   

19.
采用 ANSYS 软件建立了圆坯连铸过程的二维凝固传热模型,通过射钉实验以及表面温度的测定对模型进行了实验验证。结果表明模型能较准确地得到任意位置处铸坯坯壳厚度以及预测凝固终点位置。在传热模型的基础上结合铸坯低倍观察着重分析了圆坯坯壳生长规律。发现圆坯凝固过程中柱状晶区坯壳的厚度与凝固时间的平方根呈线性关系,符合平方根定律,并对平方根定律进行了修正,修正项与过热度和凝固速率有关;铸坯中心等轴区坯壳厚度与凝固时间平方根为非线性关系,凝固坯壳的生长不再符合平方根定律;间接证明了圆坯柱状晶生长是单方向传热,等轴晶生长时传热方向不唯一。  相似文献   

20.
双辊薄带凝固组织中晶粒三维尺寸的表征   总被引:1,自引:0,他引:1  
双辊薄带凝固组织中柱状晶粒和等轴晶粒的尺寸大小对薄带的性能和行为有非常重要的影响,在薄带铸造过程中由于晶粒的生长具有三维特征,采用传统表征方法无法实现对薄带凝固组织中晶粒三维尺寸大小的表征,本文运用定量金相和概率论知识,在对晶粒形状作出合理假设的基础上,建立了双辊薄带凝固组织中柱状晶粒和等轴晶粒三维尺寸的表征表达式,实现了柱状晶粒等轴晶粒三维生长特征的定量描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号