首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
采用化学转化处理的方法,在AZ91D镁合金的表面制备了均匀致密的钙系磷化膜,其中磷化液配方中不含铬、氟及亚硝酸盐等对环境有害的离子.通过场发射扫描电子显微镜和X射线衍射仪研究了磷化时间及温度对磷化膜结构和相组成的影响.结果表明:磷化时间为20 min,磷化温度为40℃时,所得到的磷化膜的致密性和均匀性较好.与空白基体相比,经磷化处理后的镁合金在3.5 %NaCl溶液中的耐腐蚀性能明显提高.  相似文献   

2.
采用磷酸盐体系对镁合金表面进行磷化处理,并对磷化配方进行优化.利用扫描电镜(SEM)观察膜层形貌,用极化曲线方法对不同工艺下得到的磷化膜进行耐腐蚀性能分析.结果表明,镁合金表面经过优化配方处理后,磷化膜均匀、细小、致密,膜层主要由锰的磷酸盐构成,富含氧、磷、锰等元素,完全不合Mg和Al.优化配方磷化后的镁合金表面在3.5%NaCl溶液中浸泡24h,耐腐蚀性能显著提高,并确定了最佳工艺条件为:温度60℃、时间60min、pH值3.  相似文献   

3.
镁合金表面的锌系磷化及阴极电泳   总被引:3,自引:0,他引:3  
采用在磷化液中添加Ce(NO3)3及腐蚀抑制剂的方法,在镁合金表面制备了均匀致密的锌系磷化膜,在磷化膜上进行阴极电泳处理制备的涂层具有良好的附着力和耐蚀性.在磷化液中加入稀土添加剂可使锌系磷化膜致密无裂纹,磷化膜在阴极电泳和烘烤固化过程中的失重率较低.当磷化液中Ce(NO3)3的质量浓度为1.5g/L时,磷化膜的组织最致密,电泳漆膜的附着力和耐蚀性也最好.在镁合金的锌系磷化膜上沉积20μm阴极电泳涂层,耐盐雾腐蚀时间可达720h以上,沉积35μm阴极电泳涂层时,耐盐雾腐蚀时间可达1000h以上.试验结果表明,“稀土锌系磷化+低温阴极电泳”工艺适合于镁舍金的表面防腐处理。  相似文献   

4.
磷化处理对粘结固润滑涂层的摩擦性能有很大影响。把氧化锌、磷酸、水按照不同比例配成磷化液,对金属表面进行不同参数(温度、时间)的磷化处理,并在其表面煮涂MoS2利用M-2摩擦磨损实验机测定不同磷化工艺下的MoS2涂层的磨擦学性能,确定了使MoS2固体润滑涂层摩擦性能达到最佳的磷化工艺参数,并讨论了磷化膜表面粗糙度对固体润滑涂层摩擦学性能的影响。  相似文献   

5.
用电化学方法加速低温磷化过程   总被引:3,自引:0,他引:3  
采用阳极、阴极和脉冲电流对磷化过程进行加速试验.并通过X射线衍射及膜耐蚀性、附着力等的测定.证明了用电化学方法可以在磷化液中不加促进剂,缩短磷化时间,降低磷化温度和膜重.改善膜的结构,提高膜的质量.结果还发现不同的电化学方法对磷化液有选择性.  相似文献   

6.
耐磨复合磷化工艺研究   总被引:1,自引:0,他引:1  
依据磷化的成膜机理,设计了复合磷化液的配方,并确定出磷化液的最佳配方.研究了时间、温度、酸比等工艺参数对磷化成膜的影响,通过实验确定出此种耐磨复合磷化的最佳工艺.结果表明,耐磨复合磷化克服了以往磷化工艺的不足.经过此种磷化液处理后的工件具有较好的耐磨减摩特性与耐蚀特性,膜层与基体之间具有较高的结合力.  相似文献   

7.
表面磷化处理对固体润滑涂层性能的影响   总被引:1,自引:0,他引:1  
磷化处理对粘结固润滑涂层的摩擦性能有很大影响。把氧化锌、磷酸、水按照不同比例配成磷化液,对金属表面进行不同参数(温度、时间)的磷化处理,并在其表面煮涂MoS2利用M-2摩擦磨损实验机测定不同磷化工工艺下的MoS2涂层的磨擦学性能,确定了使MoS2固体润滑涂层摩擦性能达到最佳的磷化工艺参数,并讨论了磷化膜表面粗糙度对固体润滑涂层摩擦学性能的影响。  相似文献   

8.
简述了锌系磷化膜的形成机理,针对锌系中温磷化技术的缺点,采用测量φt曲线的方法研究磷化液中促进剂对磷化膜生长速率的影响。应用XRD对膜的形貌及晶体结构进行了表征,研制出一种低温锌系磷化加速剂。实验结果表明,将亚硝酸盐与氯酸盐混合制成复合促进剂,可以缩短成膜时间,降低磷化温度,加快磷化成膜速度,在磷化温度为25℃~35℃,磷化时间为10min的条件下,可以获得性能良好的磷化膜。  相似文献   

9.
Q235钢黑膜磷化及其影响因素   总被引:1,自引:1,他引:0  
为满足国内外市场对钢铁黑膜磷化的需求,采用预发黑处理、再磷化技术,研究了常温下Q235钢的黑膜磷化规律,重点讨论了黑膜磷化的几种主要影响因素,如主盐性质、磷化液pH值、磷化次数、辅助成膜剂等因素对Q235钢黑膜磷化的影响.实验结果表明,主盐性质不同磷化膜黑度不同,pH=3时得到的黑色磷化膜最好,另外,先黑化后磷化工艺可以得到满意的黑色磷化膜,辅助成膜剂如十二烷基苯磺酸钠(NaDBS)、平平加(AES)等不利于Q235钢的黑膜磷化.  相似文献   

10.
通过先常温发黑后中温磷化的方法研制出了1种有效的黑膜磷化工艺.重点讨论了黑化液和磷化液的主要成分以及后处理工艺对Q235钢黑膜磷化的影响.实验结果表明:发黑剂A对钢铁的发黑起着关键性的作用,三氯化铁、钼酸铵、酒石酸对黑化膜的形成也各有不同的作用,最佳发黑时间为3.5~5min;在磷化液中磷酸二氢锌浓度不宜超过9.09%,硝酸钙、促进剂、络合剂和硼酸与黑色磷化膜的质量也有一定的关系;经皂化、油封等后处理后,黑色磷化膜的耐硫酸铜点滴时间可高达35min以上.  相似文献   

11.
Fe-Ni-B/TiO2纳米合金催化KBH4水解析氢性能的研究   总被引:1,自引:0,他引:1  
以TiO2为载体,以Fe^2+、Ni^2+的盐溶液为浸渍液,采用浸渍涂覆法制备了Fe-Ni-B/TiO2纳米合金催化剂.考查了不同Fe^2+、Ni^2+盐溶液为浸渍液以及浸渍次数对Fe-Ni-B/TiO2纳米合金催化KBH4析氢性能的影响.实验表明,Fe^2+、Ni^2+的硝酸盐溶液为浸渍液浸渍3次时纳米合金的催化性能优良,尤其当pH=8时,Fe-Ni-B/TiO2纳米合金催化KBH4析氢性能最佳.  相似文献   

12.
以氧化镁为致孔剂,利用环氧氯丙烷交联β-环糊精,合成多孔β-环糊精交联聚合物(β-CDP).考察β-CDP对亚甲蓝(MB)的吸附动力学、热力学讨论吸附的作用机理,并考察pH值、MB的初始质量浓度、吸附剂的投入量、吸附时间及吸附温度对β-CDP吸附MB的影响.结果表明:在室温下,水体的pH值为6.54,MB初始质量浓度为40 mg·L-1,吸附剂投入量为0.6 g·L-1,β-CDP的最大吸附量为62.6 mg·L-1;吸附符合准二级吸附动力学模型和Freundlich等温吸附模型;结合颗粒内扩散模型,以及吸附热力学数据ΔH为20.50 kJ·mol-1,ΔG为-6.1~-7.5 kJ·mol-1,可得该吸附为异质表面的多因素联合控制物理吸附.  相似文献   

13.
用交流钨极氩弧焊(TIG)对7mm厚AZ31镁合金板材进行了焊接试验;对焊接接头进行了深冷处理试验,深冷处理温度为-160℃,保温时间分别为4、8和12h;对深冷处理前后的AZ31镁合金焊接接头进行了拉伸试验,测试了AZ31镁合金TIG焊接接头的强度;用扫描电镜SEM观测了拉伸试件断口形貌;测试了AZ31镁合金TIG焊接接头的硬度分布。试验结果表明,在深冷处理温度为-160℃、保温时间为8h的情况下,深冷处理后镁合金焊接接头的各项力学性能均达到了最佳状态。  相似文献   

14.
通过溶液直接沉淀法制备了掺Al3+的亚微米氧化锌Zn(Al)O,利用XRD和SEM确定其晶体结构和形貌大小.采用Fenton/Co2+体系,在掺铝氧化锌存在和超声协同下进行降解亚甲基蓝的实验,研究溶液初始pH、H2O2浓度、反应温度、Zn(Al)O投加量、Co2+浓度、亚甲基蓝(MB)浓度等实验条件对MB降解率的影响,并对4种降解方法的效果进行比较. 结果表明:采用Fenton/Co2++Zn(Al)O+超声体系,在H2O2浓度为100 mmol/L,pH5~9,温度30~50C,Co2+浓度0.1~0.3 mmol/L,Zn(Al)O投加量1.0 g/L的条件下降解初始质量浓度达80 mg/L的MB溶液,自然光下超声1h后降解率高达72%. 对其降解机理进行了初步讨论.对掺铝氧化锌循环使用的研究发现,循环1次后降解率为68%, 2次下降到48%.在自然光下降解,该文合成的Zn(Al)O的降解率是P25(降解率约40%)的1.8倍.  相似文献   

15.
植酸是从植物中提取的1种环保的化工原料,但其应用范围仍然有限.为探索植酸对镁合金在氯化钠溶液中腐蚀的作用及植酸对镁合金腐蚀的抑制作用,采用失重法及表面分析技术,研究了AZ91D压铸镁合金在不同pH值下1%植酸、0.5%NaCl溶液中的腐蚀行为.不论失重实验还是扫描电子显微镜观察及能谱分析结果都表明,植酸对AZ91D镁合金在NaCl溶液的腐蚀具有明显的抑制作用。这种抑制作用是植酸和镁合金表面形成了化学转化膜等方式抑制.这层膜有效地阻止了侵蚀性阴离子Cl对镁合金的腐蚀.  相似文献   

16.
运用正交设计研究影响电沉积铁-镍-铬合金箔质量的主要工艺因素, 分析电流密度、溶液温度和溶液的pH值等各因素对合金成分和电流效率的影响, 通过综合评分的方法确定最佳工艺条件, 并对最佳工艺条件下获得的合金箔材的微观形貌、结构、物理和化学性能进行研究.研究结果表明: 制备的合金箔材成分为60%~65?, 34%~36%Ni, 1%~2%Cr, 厚度均匀, 表面光滑, 结晶细致. 扫描电镜观察和X衍射结果表明: 其晶粒尺寸在纳米范围内, 合金箔的抗拉强度和延展率分别为658 MPa和6%以上, 电阻率超过90 μΩ·cm, 磁感应强度为1.25 T, 最大导磁率为1.096×10-2 H·m-1, 矫顽力为357.53 A·m-1;箔材具有优异的耐腐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号