首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水电极介质阻挡放电装置,分别在氮气/氩气、空气/氩气2种混合气体放电中,采用光谱的方法测量了氮分子(C3Πu)和氮分子离子391.4 nm(B2Σu+→X2Σg+)谱线随混合气体的体积分数的变化.实验表明:随混合气体中氩气体积分数的增加,氮分子(C3Πu)的谱线强度增强,而氮分子离子391.4 nm谱线强度减弱;在2种混合气体中、相同的氩气体积分数下,氮气/氩气混合气体放电时的氮分子(C3Πu)和氮分子离子391.4 nm(B2Σu+→X2Σg+)发射谱线强度比空气/氩气混合气体放电时的强.  相似文献   

2.
大气压下介质阻挡放电的发射光谱   总被引:1,自引:0,他引:1  
为了研究大气压下气体介质阻挡放电的微观机理,利用Maya2000-pro光谱仪采集了气体介质阻挡放电的发射光谱,分析了介质阻挡放电型低温等离子体反应器的放电参数、气体体积流量和气体组分对发射光谱强度的作用规律,并依据气体放电发射光谱研究了放电空间的活性物质和氮气氩气混合气的放电机理.结果表明:大气压下氮气放电会产生第2正带系的跃迁辐射光谱;氮气放电的特征谱线强度随激励电压峰峰值与放电频率的升高而增大;氮气放电的激发态物质种类不随放电参数的改变而改变;在放电功率不变的情况下,特征谱线强度随气体体积流量变化不明显;氮气氩气混合气放电时,观察到明显的潘宁效应,且气体放电的击穿电压峰峰值随混合气中氩气体积分数的升高而下降.  相似文献   

3.
针对激光诱导击穿光谱技术测量飞灰含碳量时存在的C和Fe谱线干扰问题展开分析,并进行了基于参数优化的减小谱线干扰的实验研究.根据C和Fe元素谱线的激发特性和时间演化特性,对比分析了不同脉冲能量和等离子体信号探测延时下的谱线干扰情况,以获得减小谱线干扰的参数优化条件.在此基础上,进一步对比分析了分别采用峰值强度和积分强度建立飞灰含碳量的多元回归模型.研究结果显示,通过合理优化脉冲能量和延时,可有效减小248 nm附近C和Fe元素谱线的干扰.在优化后的测量条件下,不仅Fe 247.98 nm谱线强度得以弱化,而且可获取具有较高信噪比的C 247.86 nm谱线.由峰值强度建立的飞灰含碳量多元回归模型的拟合度r2达到了0.999,截距为0.005,具有良好的可靠性.  相似文献   

4.
在常温常压下, 利用自建的激光诱导击穿光谱(LIBS)实验装置获得纳秒激光诱导黄铜等离子体光谱, 研究发射光谱中Zn等离子体光谱在增强型光电耦合器件(ICCD)门延迟为150~3 000 ns时的演化规律, 并利用Stark展宽系数及能级跃迁参数计算等离子体的电子温度和电子密度随ICCD门延迟的演化规律. 实验结果表明: 当ICCD门延迟为150~500 ns时, 初始阶段光谱呈较强的连续谱, 随着ICCD门延迟的增大, 在连续谱上逐渐凸显Zn原子的线状特征谱线, 特征谱线强度在ICCD门延迟为500 ns时达最大; 继续增大ICCD门延迟, 谱线强度逐渐减小, 当ICCD门延迟为3 000 ns时, 等离子体的特征谱线信号基本消失; 谱线强度和电子温度随ICCD门延迟的变化一致, 电子密度和ZnⅠ(481.0 nm)谱线的半高宽随ICCD的变化接近指数拟合.  相似文献   

5.
在常温常压下, 利用自建的激光诱导击穿光谱(LIBS)实验装置获得纳秒激光诱导黄铜等离子体光谱, 研究发射光谱中Zn等离子体光谱在增强型光电耦合器件(ICCD)门延迟为150~3 000 ns时的演化规律, 并利用Stark展宽系数及能级跃迁参数计算等离子体的电子温度和电子密度随ICCD门延迟的演化规律. 实验结果表明: 当ICCD门延迟为150~500 ns时, 初始阶段光谱呈较强的连续谱, 随着ICCD门延迟的增大, 在连续谱上逐渐凸显Zn原子的线状特征谱线, 特征谱线强度在ICCD门延迟为500 ns时达最大; 继续增大ICCD门延迟, 谱线强度逐渐减小, 当ICCD门延迟为3 000 ns时, 等离子体的特征谱线信号基本消失; 谱线强度和电子温度随ICCD门延迟的变化一致, 电子密度和ZnⅠ(481.0 nm)谱线的半高宽随ICCD的变化接近指数拟合.  相似文献   

6.
253.7 nm光辐照乙醇溶液荧光光谱分析   总被引:5,自引:0,他引:5  
研究紫外光诱导不同浓度乙醇溶液的紫外光谱和荧光光谱,并对其产生机理和谱线特性进行探讨。实验结果和理论分析表明,当用紫外光照射乙醇溶液时,乙醇分子对253.7nm的紫外光产生吸收,并在400nm附近辐射出荧光;紫外光诱导不同浓度的乙醇溶液的荧光光谱特征几乎相同,只是荧光强度有较大变化。研究结果将为乙醇作为有机溶剂、催化剂、猝灭剂时对其它大分子产生荧光光谱及其特性的研究提供参考。  相似文献   

7.
将激光诱导击穿光谱技术应用到土壤检测中,分析了土壤样品形态对激光诱导等离子体特性的影响.采用波长1 064 nm的Nd-YAG脉冲激光器作为激发光源,在实验室大气环境下对粉状和片状2种形态土壤样本诱导产生激光等离子体,测量并分析了样品形态和粒径大小对元素特征谱线强度、等离子体温度和电子密度的影响.实验研究表明,相同实验条件下,粉状土样的激光等离子体温度和电子密度均高于片状土样,但片状土样的元素特征谱线强度更大,且受土壤粒径大小的影响较小,适用于土壤重金属元素的LIBS分析检测.  相似文献   

8.
利用Nd:YAG脉冲激光烧蚀金属Cu靶,观测了在空气中产生的等离子体发射光谱;通过改变激光聚焦点到靶面的距离,研究了激光聚焦位置改变时等离子体光谱空间演化规律;由NⅡ500.52 nm谱线的相对强度和半高全宽随激光功率密度的演化规律,讨论了空气中激光聚焦位置对等离子体光谱的影响. 结果发现,光谱的相对强度和光谱结构强烈地依赖于透镜与靶面间距离的现象可以从激光功率密度的角度予以解释.  相似文献   

9.
等离子体处理对稻秸/聚乙烯复合材料界面的改性   总被引:1,自引:0,他引:1  
采用红外光谱、表面自由基、动态热机械性能分析和电子显微镜等分析方法,研究了氮气低温等离子体处理对聚乙烯塑料表面改性效果以及对稻秸与聚乙烯界面相容性的影响。结果表明:经氮气等离子体处理,聚乙烯塑料分子上引入了极性基团,提高了塑料的表面润湿性和表面反应活性,改善了稻秸纤维与聚乙烯塑料的界面相容性,并使复合材料力学性能(存储模量)得以提高;等离子体处理时间和强度对塑料表面的改性效果有较大影响。  相似文献   

10.
利用一价铅离子谱线和原子谱线,在延迟时间0-360 ns内对铅等离子体自吸收的时空特性进行了研究.通过改变靶材距离及观察不同的延迟时间,发现铅等离子体不同的特征谱线的自吸收行为存在很大不同.从实验图像中可明显的看出,等离子体形成初期,铅离子和铅原子表现出不同的线型的变化.铅离子(220.26nm)出现了红移,而铅原子(280.20 nm)出现了蓝移.靶材距离焦点位置不同时,不同的特征谱线,不仅自吸收持续时间不同,而且自蚀最强点出现的时间点也不一样.所以在利用某特征谱线进行定量分析时,若选择合适的延迟时间和靶材位置,可有效地减小或削弱自吸收的影响.笔者还对铅等离子体不同特征谱线自吸收行为进行了解释.  相似文献   

11.
本文通过研究超短强激光脉冲在空气中形成的等离子体丝上荧光的特性,提出了一种间接获得等离子体丝上光强分布的方法.实验研究表明,等离子体丝上荧光主要分布在290~430 nm的紫外区域,该区域内的线状谱来自于N2的第二正带分子谱线和N+2的第一负带离子谱线.同时等离子体丝上荧光强度与入射激光能量呈非线性增长关系,当入射激光能量低于11 mJ,荧光强度快速增强表明丝上光强增大,当激光能量进一步增大时,丝上的光强变化缓慢,此时成丝结构逐步由单丝向多丝演化.同时通过研究等离子体丝上光强随光脉冲传输距离的变化规律,进一步验证了等离子体成丝机制是基于光束自聚焦效应和等离子体散焦过程之间的动态平衡的正确性.  相似文献   

12.
采用紫外-可见光谱和FT-IR研究了电晕放电等离子体与H_2O_2氧化两种方法降解甲基蓝过程溶液的颜色变化和光谱行为差异。紫外-可见光谱结果表明,电晕放电等离子体降解甲基蓝过程溶液的颜色先加深再逐渐变浅,而H_2O_2氧化甲基蓝过程溶液的颜色一直变浅;H_2O_2氧化甲基蓝过程产生的中间物质在紫外-可见谱图中279 nm与372 nm处产生新吸收峰,而电晕放电等离子体降解甲基蓝过程的紫外-可见谱图中603 nm处甲基蓝发色基团吸收峰的强度先增强后减弱,并无新吸收峰出现。FT-IR分析结果表明,电晕放电等离子体技术破坏了甲基蓝结构中不稳定的环外C=C及C=N,在1 692.4 cm-1和1 400.4 cm-1处分别生成C=O和N=O的吸收峰;而H_2O_2氧化过程只破坏了C=N,在1 386.4 cm-1处产生N=O的吸收峰,表明这两种处理方法均对甲基蓝溶液有一定的降解能力。  相似文献   

13.
利用双脉冲激光等离子体光谱技术测量了激光作用于高纯度硫靶产生的16~24nm波段的发射光谱,分析发现谱线主要来自Sq+(q=7,8,9,10)离子的2s—2p跃迁.基于稳态碰撞辐射模型和激发态离子数布局满足归一化玻尔兹曼分布的假设,计算了不同离化态硫离子在不同等离子体温度和电子密度下的布居数,在不同电子温度下模拟了等离子体光谱,并通过与实验光谱比较确定了等离子体参数.  相似文献   

14.
由于受到空气大气压条件下沿面放电介质阻挡等离子体的空间结构限制,选用光栅单色仪对其进行了光谱测量,获得了不同电源频率和电极间隙条件下的光谱谱线.实验结果表明:不同条件下的谱线形状相同,其中主要为氮气放电;光辐射强度与频率间存在线性关系;电极间隙为零时,光辐射强度最大,当电极间隙向正负两侧偏离零时,其强度呈对称线性下降;各峰面积所占谱线总面积比重不随电源频率和电极间隙变化.  相似文献   

15.
本文以卵磷脂为模型化合物、用福里埃变换红外光谱(FT-IR)法、研究了生物膜中磷脂的结构状态。 从磷脂吸水前后有关红外谱带的强度变化及频率位移的实验证据,说明了磷脂分子整个极性基团部份(头部)、包括其中的-CH_2-和-CH_3憎水基团,都是被水化层包围。因此,在磷脂吸水后,除了≡PO_4和-COO基团的谱带有明显的强度和频率变化外、-CH_2-、-CH_3和C-C-N等基团振动也相应有明显的改变。本文结果表明:FT-IR光谱中谱带强度变化是研究生物膜结构的有效手段。  相似文献   

16.
采用针-板介质阻挡放电结构的射流装置,在大气压空气环境下产生了氩气等离子体羽.通过采集外加电压、电流及发光信号发现,在电压正、负半周期各有一个电流脉冲.就电流峰值而言,正脉冲大于负脉冲.等离子体羽的发射光谱包含氩4p→4s跃迁谱线、氮分子第二正带系(C~3Π_u→B~3Π_g)、带头位于308.0 nm的OH转动谱线(A~2Σ~+→X~2Π)和777.4 nm的氧原子发射谱线.通过拟合N_2(C~3Π_u→B~3Π_g)和OH的转动光谱,可以获得等离子体羽的气体温度.研究发现,拟合N_2第二正带系得到的气体温度要高于拟合OH转动光谱得到的气体温度.分析表明,氩的亚稳态Ar(4s)能够将能量转移给基态N_2,使其跃迁到高转动能级的激发态(C~3Π_u).因此,这种传能导致具有高转动能级氮分子布居数的增加,进而导致利用其计算得到的气体温度相对较高.利用OH的转动谱带拟合计算了气体温度,并研究了气体温度随实验参数的变化.结果表明,增大峰值电压及气体流量导致气体温度升高,但增加驱动频率气体温度降低.  相似文献   

17.
采用溶胶-凝胶制备了非晶氧化铕及摻杂铟离子的氧化铕. 利用X-射线衍射谱、光致发光谱、荧光光谱对其性质进行表征. 铕的5D0 →7FJ(J=0, 1, 2, 4, 5, 6)发射被观测到,并对加入等摩尔分数的铟离子和铕离子,600 ℃退火的样品变温光致发光谱进行了研究. 不同掺杂浓度的非晶Eu2O3在600 ℃退火时的光致发光谱均在615 nm和619 nm处出现强发射,随着掺杂浓度的提高,615 nm处发光增强,619 nm处发光减弱,峰位没有改变,其中以少量掺杂(xIn=0.01)非晶Eu2O3光致发光强度最强.  相似文献   

18.
通过实验研究了Ar气下激光诱导Cu等离子体的空间分辨发射光谱.采用的激光能量为350 mJ/pulse,波长范围为440~540 nm.在局部热力学平衡(LTE)条件下,根据谱线的相对强度,得到了等离子体的电子温度在104K以上.研究了原子发射谱线强度、电子温度和半高全宽(FWHM)随空间、缓冲气体压力变化的规律.结果表明,在Ar气中压力分别为100 kPa和50 kPa相比,铜的原子特征谱强度降低而连续谱和氩离子谱线强度增加.同时缓冲气压的增大导致谱线展宽的增大.  相似文献   

19.
通过单脉冲激光烧蚀MgSO4水溶液射流产生激光等离子体,通过调节ICCD门脉冲相对激光脉冲的延时,测定了液相基质中激光等离子体中Mg元素的时间分辨发射光谱.实验结果表明,当ICCD门延时在0.6μs-1.6μs范围内变化时,谱线强度随延时的增大逐渐减小,但减小的速度越来越慢;谱线的信噪比有一个先上升后缓慢减小并趋于稳定的过程.同时,利用Boltzmann斜线法对Mg原子谱线(518.36nm,517.268nm,516.732nm,383.829nm,383.230nm,382.935nm)进行拟合,得到了不同延时下Mg等离子体的电子温度范围为4772K-6281K,线性相关系数为0.958.拟合结果说明本实验条件下得到的液相基质激光等离子体满足局部热平衡条件.  相似文献   

20.
研究了中华猕猴桃蛋白酶在不同浓度(V:V)乙醇存在下的内源荧光发射光谱、紫外差光谱、圆二色光谱(CD谱)及傅立叶变换红外光谱的变化,并测定了相应的活力变化,当乙醇浓度低于30%时,酶的荧光强度无明显变化,而乙醇浓度大于30%时,则酶荧光强度增大,且峰位略红移。在乙醇溶液中,酶的紫外差光谱在225~235nm内出现正峰,峰强度随乙醇浓度的增高基本表现为逐渐增大,峰位也逐渐蓝移。CD谱及红外光谱的测定结果表明低浓度乙醇中酶分子有序二级结构的减少及高浓度乙醇中β-折叠含量的增加.随乙醇浓度的增加.酶的活力表现为逐渐降低,且乙醇对酶的失活作用类似于竞争性抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号