首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
考虑 m 维黎曼空间 V_m,以 y~α(α.β.γ=1,2,…,m)表示其点的坐标,基本形式写为φ=a_(αβ)dy~αdy~β,(1.1)V_m 中的 n 维曲面 V_n 由方程y~α=f~α(x~1,x~2,…,x~n)=f~α(x~i)(1.2)(i,j,k=1,2,…,n)所定义,这儿 f~α是 x~i 的充分光滑的函数,雅可比矩阵的秩数为 n.在 V_n 上的诱导基本张量 g_(ij)由下式决定:  相似文献   

2.
考虑下面非线性椭圆型方程非局部边值问题。(1)Lu=- / x_2(a_(ij)(x)( u/ x_2)=f(x,u(x),Du(x),x∈Ω),u|_( Ω)=C(待定常数),- integral from n=( Ω) a_(ij)(x)( u/ x)cos(n,x_i)ds=0,在 f 的某些假设下,本文证明了解的存在性.  相似文献   

3.
一、引言一般相对论确定事象空间是一个黎曼空间,这就是说,在这样的四度流形中给定了不变的线性元素 ds~3=g_(ij)(x)dx~idx~j (i,j=1,2,3,4)满足条件 Det|g_(ij)|≠0 (g_(ij)=g_(ji)) (1)並且g_(ij)满足場方程 R_(ij)-g_(ij)(R/2-∧)=-  相似文献   

4.
设Vn(n>2)是一个n维黎曼空间。当Vn的黎曼曲率张量R~h_(ijk)满足R~h_(jik),m=0,则称Vn是一嘉当意义下的对称空间,本文中有时简称为对称空间。其中逗号表示关于Vn的基本张量g_(ij)的共变导数(下同). 当Vn的R~h_(ijk)满足R~h_(ijk,m)=a_mR~h_(ijk),R~h_(ijk)(?),0{a_m}是一非零向量,则称Vn是一循环空间。近来很多学者开展了对共形对称空间;共形循环空间;射影对称空间;射影循环空间  相似文献   

5.
心理学知识指出,人们在估计两件事物某种质的区别时,习惯而且能用五种判断很好表示,判断矩阵构成之理论基础也在于此,从而使多个事物在两两比较中,形成优劣的排序。A=(a_(ij))_(n×n),其中 a_(ij)>0,a_(ij)从1,2,…,9及1/2,1/3,…,1/9中取,且a_(ij)=i,a_(ij)=i,i,j=1,2,…,9,即 n≤9。当算得 A 之最大特征值λ_(max)所对应的特征向量时,则对 A 来说多个事物的优劣顺序已由特征向量的分量数值给出,优劣顺序就是特征向量的分量数值之大小顺序。  相似文献   

6.
设R是有单位元的交换环,M是R-模,如果对M的任意子模N,存在R的理想I,使得N=I·M,则称M是乘法R-模,本文主要结论是:设M=Rx_1+…+Rx_(?),其中x_i=(a_(1i),a_(2i),…,a_(?))∈R~(1×n),i=1,2,…,n,并且sum from i=1 to (?)a_(ii)=1,那么当R是下列环之一时:(1)整环;(2)半局部环;(3) J(R)=0,有:M是乘法R-模当且仅当F_2(A)=0,其中F_2(A)表示矩阵A=(a_(ij)_(?)中一切2阶子式在R中生成的理想。  相似文献   

7.
爱因斯坦空间与利齐平行空间是两类重要的黎曼空间,本文对确定它们的条件以及二者间的关系试作如下探讨。一、爱因斯坦空间定义若一黎曼空间{M~n,g}的利齐张量为R_(λμ)=αg(λμ)的形状,而且α=R/n(R为数量曲率)是常数时,则称{M~n,g}为n维爱因斯坦空间。定理1 在二维黎曼空间{M~2,g}上,若▽_λR__(μv) ▽_μR_(vλ) ▽_vR_(Xu)=0,则{M~2,g}为爱因斯坦空间。  相似文献   

8.
命a_(ij)(1≤i≤t,1≤j≤s)为ts个整数,p为素数,且对于每个i(1≤i≤t),a_(il),…,a_(is)不全为p的倍数,及对于每个j(1≤i≤s),a_(ij),…,a_(tj)不全为p的倍数。又记x=max(1|x|),p_1=[(p-1)/2],p_2=[p/2],这里[u]表示u的整数部分。考察两组对偶的一次同余方程组  相似文献   

9.
§1.引言設f(z)=sum from n=1 to ∞(a(n)z~n)是单位圓盘E={z:|z|<1}中的解析函数,如果f(z)把E一一地映成凸域,則称f(z)是E上的凸映照.称多項式序列V_n(z)=n/(n 1)a_1z n(n-1)/((n 1)(n 2))a_2z~2 … n(n-1)…/((n 1)(n 2)…(2n))a_nz~n,(n=1,2,…)为f(z)的de la Vall(?)e Poussin平均。1958年,G.P(?)lya和I.J.Schoenberg証明了这样的結論:如果f(z)是E上的凸映照,那么;(1).V_n(z)也都是E上的凸映照;(2).矿V_n(z)在E上收斂于f(z);(3).V_n(z)在E上从属于f(z),即V_n(z)相似文献   

10.
缓变系数线性时滞系统零解的渐近稳定性   总被引:1,自引:0,他引:1  
考虑如下的时滞系统 (dx_1(t))/(dt)=sum from j=1 to n[a_(ij)(t)x_j(t)+b_(ij)(t)x_i(t-τ)其中,a_(ij)(t),b_(ij)(t)≥t_0上连续可微有界,而时滞τ为非负常数, 当τ很小时,将系统(1)写成下面的形式  相似文献   

11.
设一个以 g 为黎曼度量的 n 维黎曼空间(V_n,g),如果它的 Ricci 张量 K_(μλ)=0,则称它为 Ricci 平坦空间(见[1]p18)。由[1][2]表明 Ricci 平坦空间是理论物理中有重要意义的一类空间。本文旨在给出一个黎曼空间与 Ricci 平坦空间射影对应和共形对应的某些条件。  相似文献   

12.
设p为任一素数,L,s,t为任意自然数,a_(ij)(1≤t,1≤j≤s)为st个整数,对于每个i(1≤i≤t),a_(ij),…,a_(is)不全为P~L的倍数。又记X=max(1,1×1)。考察一次同余方程组a_(il)x_1… a_(is)x_x x_(s i)≡0(modp~L)(1) (1≤i≤St)适合条件-p~L/2相似文献   

13.
1.设f_n=sum from i,j=1 to n(a_(ij)x_ix_j) (a_(ij)=a_(ji))是一个系数a_(ij)为整数,行列式为D_n的恒正二次型。对于已给的n和D_n我们用C_n,D_n来表示他们的类数。行列式等于±|的整系数线性变换能够把f_n变成它自己的叫做一个自守变换。二次型f_n的自守变换的个数的倒数叫做f_n所代表的这个类的权,而同一个目内所有不同各类的权的和叫做这个目的权。  相似文献   

14.
继文献[1]后,又提出了一种中子活化R矩阵元的新表达方式.以~(175)Yb(i或j)-~(160)Yb(j或i),~(153)Gd(i或j)-~(159)Gd(j或i),~(103)Ru(i或j)-~(97)Ru(j或i)或~(95)Zr(i或j)-~(97)Zr(j或i)为中子能谱监测器,j为标准R_(ij)为中子能谱指针.定义相对偏离热化系数x=(R_(ij)-1)/(Q_(0i)-Q_(0j))《1,Q_(0i)和Q(0j)分别为i和j的母核的无限稀释共振积分截面与热中子俘获截面之比值,则R_(ij)=1+a~i_jx,R_(Rj)=1+(?)a~k_mx~m,k代表i和j以外诸核素,R_(kj)级数迅速收敛.R_(kj)的准确度不受Q_(0i)用Q_(0j)的误差的影响.用高精度实验测定诸a~k_m值,可同时用4种中子能谱监测器(兼作标准),以R_(ij)定x,由x和诸  相似文献   

15.
<正> 本文R始终表示有单位元的交换环。我们考虑系数在R中的线性方程组AX=B (1)在R上可解的条件,这里A=(a_(ij))是一个m×n矩阵,X=(x_1,…,x_n)~t,B=(b_1,…,b_m)~t。如果m>n,可以引入变量x_(n+1),…,x_m及a_(ij)=0(1≤i≤m,n+1≤j≤m)。因此,不失一般性,我们总可以假定m≤n。关于线性方程组AX=B有解的充分条件,文献[1]、[2]、[3]中针对一些  相似文献   

16.
设B(H)是维数大于1的复Hilbert空间H上有界线性算子全体得到的代数.?A,B∈B(H),定义拟积A°B=A+B-AB.证明?是B(H)上的双射且满足?(A*°B)=?(A)*°?(B),?A,B∈B(H)的充要条件是当dim H≥3时,存在H上的酉算子或共轭酉算子U使得?(A)=UAU*,A∈B(H);当dim H=2时,存在H上的酉算子U使得?(A)=UA_τU*,A∈B(H),其中τ是C上的环自同构.设A=(a_(ij))∈M_2,则令A_τ=τ(a_(ij)).  相似文献   

17.
文[2]证明了一个关于三阶行列式的等式。本文利用矩阵及其子式的运算,将等式推广到n阶行列式,且证明更加简洁。 设有n阶方阵A=(a_(ij))_(n×n),B=(b_(ij))_(n×n)。A中的元素工、a_(ij)的代数余子式记作A_(ij),A之伴随矩阵记作A,即A=(A_(ji))_(n×n)。A的子矩阵、子式、代数余子式的表示全按文献[1]记为:块A  相似文献   

18.
本文利用矩阵块对角占优的性质,给出矩阵非奇异的几个判定条件。下面用 R~(n×n)表示 n 阶实方阵的全体,用 C~(n×n)表示 n 阶复方阵的全体,并令,Z~(n×n)={A=(a_(ij))∈R~(n×n)|a_(ij)|≤0,i≠j,1≤i,j≤n}若 A 是非奇异 M 一矩阵。则记 A∈M.引理1 设 A=(a_(ij))∈Z~(n×n),且 A_(ij)>0,1≤i≤n,令 A =,则 A∈M  相似文献   

19.
记■,其中若k_(ij)=p~(e1)_1p~(e2)_2…p~(en) _n,则p_i?π_(ij).证明G是一个群的充要条件是矩阵中任意(ij)位置的元满足条件■,且k_(ij)整除所有的k_(il)k_(lj)(1≤ilj≤n).当G是群时,G的上下中心列重合的充要条件是■,且k_(ij)=d ~((m))_(ij),其中d~((m))_(ij)表示所有■(1≤il_1l_2l_(m-1)j≤n)的最大公约数.  相似文献   

20.
分子轨道理论中,体系的总能量既可写成 E=2 sum from i to nε_1-sum from i to n sum from j to n(2J_(ij)-K_(ij))+sum from A相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号