首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An olivine-free mantle source of Hawaiian shield basalts   总被引:11,自引:0,他引:11  
Sobolev AV  Hofmann AW  Sobolev SV  Nikogosian IK 《Nature》2005,434(7033):590-597
More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.  相似文献   

2.
Recycling lower continental crust in the North China craton   总被引:85,自引:0,他引:85  
Gao S  Rudnick RL  Yuan HL  Liu XM  Liu YS  Xu WL  Ling WL  Ayers J  Wang XC  Wang QH 《Nature》2004,432(7019):892-897
Foundering of mafic lower continental crust into underlying convecting mantle has been proposed as one means to explain the unusually evolved chemical composition of Earth's continental crust, yet direct evidence of this process has been scarce. Here we report that Late Jurassic high-magnesium andesites, dacites and adakites (siliceous lavas with high strontium and low heavy-rare-earth element and yttrium contents) from the North China craton have chemical and petrographic features consistent with their origin as partial melts of eclogite that subsequently interacted with mantle peridotite. Similar features observed in adakites and some Archaean sodium-rich granitoids of the tonalite-trondhjemite-granodiorite series have been interpreted to result from interaction of slab melts with the mantle wedge. Unlike their arc-related counterparts, however, the Chinese magmas carry inherited Archaean zircons and have neodymium and strontium isotopic compositions overlapping those of eclogite xenoliths derived from the lower crust of the North China craton. Such features cannot be produced by crustal assimilation of slab melts, given the high Mg#, nickel and chromium contents of the lavas. We infer that the Chinese lavas derive from ancient mafic lower crust that foundered into the convecting mantle and subsequently melted and interacted with peridotite. We suggest that lower crustal foundering occurred within the North China craton during the Late Jurassic, and thus provides constraints on the timing of lithosphere removal beneath the North China craton.  相似文献   

3.
Spandler C  O'Neill HS  Kamenetsky VS 《Nature》2007,447(7142):303-306
The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.  相似文献   

4.
This paper summarizes the lithogeochemical features of composite lavas, dikes and plutons composed of early Cretaceous associated basic-acidic igneous rocks from the coastal area of Zhejiang-Fujian. On the basis of the studies on Nd, Sr, Pb isotopic signatures and geochemical characteristics of large ion lithophile elements (L1LE) , light rare earth elements (LREE) and high field strong elements ( HFSE) of these contemporary basic-acidic igneous rocks, it is considered that the source enrichment caused by the subduction of Pacific plate and contamination of crustal rocks and melts during ascending process may lead to the formation of basaltic magmas with a high LILE concentration. These late Mesozoic composite basic-acidic igneous rocks are the products of the interactions between crust and mantle in active continental margin.  相似文献   

5.
Oxygen isotopic compositions of zircons from pyroxenite (~145 Ma) of Daoshichong, Dabieshan have been measured by an ion microprobe. Both within the single grain and among different grains, oxygen isotopic ratios are homogeneous, δ 18O = (7.66‰±0.46)‰ (1 SD, 1 σ = 0.10, n = 22). High δ 18O values indicate that the mantle-derived parent magma of Daoshichong pyroxenite have undergone interaction with crustal materials. Combing with other geochemical constraints, the way of crust-mantle interaction is suggested to be source mixing other than crustal contamination. The time interval between crust-mantle interaction and formation of the parent magma of Daoshichong pyroxenite is less than several million years. The crustal component involving in crust-mantle interaction is mafic lower crust, and the parent magma of pyroxenite possibly contain large proportion (>37%) of such lower crust.  相似文献   

6.
Continental mantle signature of Bushveld magmas and coeval diamonds   总被引:2,自引:0,他引:2  
Richardson SH  Shirey SB 《Nature》2008,453(7197):910-913
The emplacement of the 2.05-billion-year-old Bushveld complex, the world's largest layered intrusion and platinum-group element (PGE) repository, is a singular event in the history of the Kaapvaal craton of southern Africa, one of Earth's earliest surviving continental nuclei. In the prevailing model for the complex's mineralization, the radiogenic strontium and osmium isotope signatures of Bushveld PGE ores are attributed to continental crustal contamination of the host magmas. The scale of the intrusion and lateral homogeneity of the PGE-enriched layers, however, have long been problematical for the crustal contamination model, given the typically heterogeneous nature of continental crust. Furthermore, the distribution of Bushveld magmatism matches that of seismically anomalous underlying mantle, implying significant interaction before emplacement in the crust. Mineral samples of the ancient 200-km-deep craton keel, encapsulated in macrodiamonds and entrained by proximal kimberlites, reveal the nature of continental mantle potentially incorporated by Bushveld magmas. Here we show that sulphide inclusions in approximately 2-billion-year-old diamonds from the 0.5-billion-year-old Venetia and 1.2-billion-year-old Premier kimberlites (on opposite sides of the complex) have initial osmium isotope ratios even more radiogenic than those of Bushveld sulphide ore minerals. Sulphide Re-Os and silicate Sm-Nd and Rb-Sr isotope compositions indicate that continental mantle harzburgite and eclogite components, in addition to the original convecting mantle magma, most probably contributed to the genesis of both the diamonds and the Bushveld complex. Coeval diamonds provide key evidence that the main source of Bushveld PGEs is the mantle rather than the crust.  相似文献   

7.
Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas   总被引:11,自引:0,他引:11  
Sun W  Bennett VC  Eggins SM  Kamenetsky VS  Arculus RJ 《Nature》2003,422(6929):294-297
Variations in the 187Os/188Os isotopic signature of mantle and mantle-derived rocks have been thought to provide a powerful chemical tracer of deep Earth structure. Many studies have inferred from such data that a long-lived, high-rhenium component exists in the deep mantle (187Re is the parent isotope decaying to 187Os, with a half-life of approximately 42 billion years), and that this reservoir probably consists of subducted oceanic crust. The interpretation of these isotopic signatures is, however, dependent on accurate estimates of rhenium and osmium concentrations in all of the main geochemical reservoirs, and the crust has generally been considered to be a minor contributor to such global budgets. In contrast, we here present observations of high rhenium concentrations and low Yb/Re ratios in arc-type melt inclusions. These results indicate strong enrichment of rhenium in undegassed arc rocks, and consequently the continental crust, which results in a crustal estimate of 2 p.p.b. rhenium, as compared to previous estimates of 0.4-0.2 p.p.b. (refs 4, 5). Previous determinations of rhenium in arc materials, which were largely measured on subaerially erupted samples, are likely to be in error owing to rhenium loss during degassing. High mantle-to-crust rhenium fluxes, as observed here, require a revaluation of geochemical models based on the 187Re-187Os decay system.  相似文献   

8.
High precision zircon U-Pb dating indicates that main intrusive bodies (Tong'an,Niumiao,Huashan,Lisong),and a mafic microgranular enclave in the Huashan-Guposhan complex were formed at 160-163 Ma.The εHf(t) values of zircons from the Huashan granite vary from -2.8 to +0.3 and those from the Lisong granite vary from -2.3 to +0.3,which are obviously different with those values (+2.6 to +7.4) of the mafic enclaves from the Lisong granite.These Hf isotopic data indicate that the mafic enclaves and host granites...  相似文献   

9.
Kemp AI  Hawkesworth CJ  Paterson BA  Kinny PD 《Nature》2006,439(7076):580-583
It is thought that continental crust existed as early as 150 million years after planetary accretion, but assessing the rates and processes of subsequent crustal growth requires linking the apparently contradictory information from the igneous and sedimentary rock records. For example, the striking global peaks in juvenile igneous activity 2.7, 1.9 and 1.2 Gyr ago imply rapid crustal generation in response to the emplacement of mantle 'super-plumes', rather than by the continuous process of subduction. Yet uncertainties persist over whether these age peaks are artefacts of selective preservation, and over how to reconcile episodic crust formation with the smooth crustal evolution curves inferred from neodymium isotope variations of sedimentary rocks. Detrital zircons encapsulate a more representative record of igneous events than the exposed geology and their hafnium isotope ratios reflect the time since the source of the parental magmas separated from the mantle. These 'model' ages are only meaningful if the host magma lacked a mixed or sedimentary source component, but the latter can be diagnosed by oxygen isotopes, which are strongly fractionated by rock-hydrosphere interactions. Here we report the first study that integrates hafnium and oxygen isotopes, all measured in situ on the same, precisely dated detrital zircon grains. The data reveal that crust generation in part of Gondwana was limited to major pulses at 1.9 and 3.3 Gyr ago, and that the zircons crystallized during repeated reworking of crust formed at these times. The implication is that the mechanisms of crust formation differed from those of crustal differentiation in ancient orogenic belts.  相似文献   

10.
The geochemical composition of the Earth's upper mantle is thought to reflect 4.5 billion years of melt extraction, as well as the recycling of crustal materials. The fractionation of rhenium and osmium during partial melting in the upper mantle makes the Re-Os isotopic system well suited for tracing the extraction of melt and recycling of the resulting mid-ocean-ridge basalt. Here we report osmium isotope compositions of more than 700 osmium-rich platinum-group element alloys derived from the upper mantle. The osmium isotopic data form a wide, essentially gaussian distribution, demonstrating that, with respect to Re-Os isotope systematics, the upper mantle is extremely heterogeneous. As depleted and enriched domains can apparently remain unequilibrated on a timescale of billions of years, effective equilibration seems to require high degrees of partial melting, such as occur under mid-ocean ridges or in back-arc settings, where percolating melts enhance the mobility of both osmium and rhenium. We infer that the gaussian shape of the osmium isotope distribution is the signature of a random mixing process between depleted and enriched domains, resulting from a 'plum pudding' distribution in the upper mantle, rather than from individual melt depletion events.  相似文献   

11.
Making continental crust: The sanukitoid connection   总被引:6,自引:0,他引:6  
The average continental crust possesses intermediate compositions that typify arc magmatism and as a result it is believed to have been created at ancient convergent plate boundaries. One possible mechanism for intermediate continental crust formation is the direct production of andesitic melts in the upper mantle. Sanukitoids, which characterize the Setouchi volcanic belt, SW Japan, include unusually high-Mg andesites (HMA). They were generated by slab melting and subsequent melt-mantle interactions under unusual tectonic settings such as where warm lithosphere subducts into hot upper mantle. Such conditions would have existed in the Archean. Hydrous HMA magmas are likely to have solidified within the crust to form HMA plutons, which were then remelted to produce differentiated sanukitoids. At present, generation and differentiation of HMA magmas may be taking place in the Izu-Bonin-Mariana arc-trench system (IBM), because (1) HMA magmatism characterizes the initial stages of the IBM evolution and (2) the IBM middle crust exhibits Vp identical to that of the bulk conti- nental crust. Vp estimates for plutonic rocks with HMA compositions support this. However tonalitic composition for middle-crust-forming rocks cannot be ruled out, suggesting an alternative possibility that the continental crust has been created by differentiation of mantle-derived basaltic magmas.  相似文献   

12.
Kimberlite ascent by assimilation-fuelled buoyancy   总被引:3,自引:0,他引:3  
Russell JK  Porritt LA  Lavallée Y  Dingwell DB 《Nature》2012,481(7381):352-356
Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond). Kimberlite magmas also reputedly have higher ascent rates than other xenolith-bearing magmas. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons.  相似文献   

13.
The petrochemical as well as zircon U-Pb and Lu-Hf isotopic studies of granulite facies metamorphic rock from the Tao'xi Group in eastern Nanling Range, Central Cathaysia indicate that its protolith is the sedimentary rock with low maturation index. The clastic materials are mostly from middle Neoproterozoic (-736 Ma) granitoid rocks with minor Neoarchaean and Paleoproterozoic rocks. The timing of this Neoproterozoic magmatism is in agreement with the second period of magmatism widespread surrounding the Yangtze Block. Hf isotopic data indicate that the Neoproterozoic granitoids resulted from the recycled Paleoproterozoic mantle-derived crustal materials. The sedimentary rock was deposited in Late Neoproterozoic Era, and carried into low crust in Early Paleozoic. The partial melting of the meta-sedimentary rock took place at about 480 Ma and subsequently granulite facies metamorphism occurred at ca. 443 Ma. The zircons forming during this time interval (Early Paleozoic) show large Hf isotope variations, and their ZHf(t) values increase from -13.2 to +2.36 with decreasing age, suggesting the injection of mantle-derived materials during partial melting and metamorphism processes in the Early Paleozoic. Calculation results show that this metamorphic rock, if evolved to Mesozoic, has similar isotopic composition to the nearby Mesozoic high Si peraluminous granites, implying that this kind of granulite facies metamorphic rock is probably the source material of some Mesozoic peraluminous granitoids in eastern Nanling Range.  相似文献   

14.
Borg LE  Connelly JN  Boyet M  Carlson RW 《Nature》2011,477(7362):70-72
Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360?±?3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.  相似文献   

15.
Identifying melts of thickened lower continental crust from high Sr/Y rocks is very important to trace deep crustal processes. Recent studies on Dabie Early Cretaceous granitoids have revealed that melts derived from thickened lower continental crust have higher Sr/CaO ratios and define a high Sr evolution trend compared with normal granitoids. Fractional crystallization of plagioclase can significantly change Sr and CaO contents of melts, but its role in controlling the Sr/CaO ratios of the melts is still unclear. This study gives a direct comparison of plagioclase compositions between normal granitoids and low-Mg adakitic rocks. On the basis of Sr-Ca exchange partition coefficient, discussions on effect of plagioclase crystallization on Sr/CaO ratios of melts show that fractional crystallization of abundant plagioclase cannot significantly change Sr/CaO ratios of granitic melts, which are inherited from their individual initial melts. High Sr/CaO ratios indicate the absence of plagioclase in sources of granitic melts. Therefore, high Sr/CaO correlation can be an important indicator to identify melts derived from thickened lower continental crust.  相似文献   

16.
The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt.In this study,we present precise LA-ICP-MS zircon U–Pb dating and LAMC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block.The magmatic zircons from both samples yield similar protolith ages of 945±6 and 942±6 Ma,indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area.These zircons have crustal Hf model ages of1.82–2.22 and 1.70–2.03 Ga,respectively,which are significantly older than their crystallization ages.It indicates that their parental magmas were derived from the reworking of ancient crust.However,we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust.The inherited(detrital)zircon cores not only yield a wide age range of ca.989–1617 Ma,but also exhibit large Hf-isotope variations with Hf model ages of1.54–2.30 Ga.In particular,some 1.4–1.6 Ga zircons show high initial176Hf/177Hf ratios,consistent with those of depleted mantle,which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust.The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton.Therefore,it would not be a fragment of the Precambrian basement of the Tarim Craton.  相似文献   

17.
This study presents noble gaseous data of the corundum megacrysts from the Cenozoic basalts in Changle, Shandong Province, eastern China. It is known that no noble gaseous data of corundum megacryst have been documented before. The 3He/4He ratios (1.13-7.37 Ra) of the corundums from Changle vary from atmosphere to MORB values; the 20Ne/22Ne (9.67-10.75) and 21Ne/22Ne (0.0280-0.0372) data define two linear trends on Ne three-isotope diagram, respectively, along the MFL and the correlation line between atmosphere and MORB; the 38Ar/36Ar (0.177-0.194) ratios, the 40Ar/36Ar (280.9 -404.2) ratios and the 128-136Xe/132Xe ration with obvious 129Xe excess are generally higher than at-mospheric component, but the 40Ar/36Ar ratios are much closer to atomospheric ratio. The isotopic compositions of noble gases (particularly for He and Ar) of the corundums are similar to those of py-roxene, anorthoclase megacrysts, and mantle-derived xenoliths from this area, and those of man-tle-derived xenoliths from several areas in eastern China. Therefore, the noble gases trapped in the corundums probably are from mantle source, representing a ‘mixed fluid' produced by the interaction between the lithospheric mantle and fluids releasing from the convective plate. Both the noble gas isotopic compositions and the oxygen isotopic compositions of the solid corundums are not the characteristics of crustal source. These suggest that the corundums crystallized from mantle-derived magmas with minimal crustal contamination.  相似文献   

18.
Sobolev AV  Hofmann AW  Jochum KP  Kuzmin DV  Stoll B 《Nature》2011,476(7361):434-437
Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5?billion years (Gyr). However, if such correlations are produced by mixing of unrelated mantle components they will have no direct age significance. Re-Os decay model ages take into account the mixing of sources with different histories, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction. Here we report the first data on (87)Sr/(86)Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200-650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique 'time stamp' on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200-650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1)?cm?yr(-1), much faster than previously thought.  相似文献   

19.
Foley S  Tiepolo M  Vannucci R 《Nature》2002,417(6891):837-840
It is thought that the first continental crust formed by melting of either eclogite or amphibolite, either at subduction zones or on the underside of thick oceanic crust. However, the observed compositions of early crustal rocks and experimental studies have been unable to distinguish between these possibilities. Here we show a clear contrast in trace-element ratios of melts derived from amphibolites and those from eclogites. Partial melting of low-magnesium amphibolite can explain the low niobium/tantalum and high zirconium/samarium ratios in melts, as required for the early continental crust, whereas the melting of eclogite cannot. This indicates that the earliest continental crust formed by melting of amphibolites in subduction-zone environments and not by the melting of eclogite or magnesium-rich amphibolites in the lower part of thick oceanic crust. Moreover, the low niobium/tantalum ratio seen in subduction-zone igneous rocks of all ages is evidence that the melting of rutile-eclogite has never been a volumetrically important process.  相似文献   

20.
Zircon U-Pb dating indicates that the fuchsite quartzite in eastern Hebei Province was derived from weathering and erosion of the 3.6-3.8 Ga granitic rocks. In-situ zircon Hf analyses show that the Lu-Hf isotopic system remained closed during later thermal disturbances. Zircons with concordant ages have Hf isotopic model ages of about 3.8 Ga, suggesting a recycling of this ancient crust. The -3.8 Ga zircons have similar Hf isotopic compositions to those of chondrite, indicating that their source rocks (granitic rocks) were derived from partial melting of the juvenile crust which originated from a mantle without significant crust-mantle differentiation. Therefore, it is proposed that there was no large-scale crustal growth before -3.8 Ga in eastern Hebei Province. Considering zircon Hf isotopic data from other areas, it is concluded that the most ancient crust in the North China Craton probably formed at about 4.0 Ga, and the possibility to find crust older than 4.0 Ga is very limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号