首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean   总被引:2,自引:0,他引:2  
The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.  相似文献   

2.
The Earth's mantle is isotopically heterogeneous on length scales ranging from centimetres to more than 10(4) kilometres. This heterogeneity originates from partial melt extraction and plate tectonic recycling, whereas stirring during mantle convection tends to reduce it. Here we show that mid-ocean ridge basalts from 2,000 km along the southeast Indian ridge (SEIR) display a bimodal hafnium isotopic distribution. This bimodality reveals the presence of ancient compositional striations (streaks) in the Indian Ocean upper mantle. The number density of the streaks is described by a Poisson distribution, with an average thickness of approximately 40 km. Such a distribution is anticipated for a well-stirred upper mantle, in which heterogeneity is continually introduced by plate tectonic recycling, and redistributed by viscous stretching and convective refolding.  相似文献   

3.
Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas   总被引:11,自引:0,他引:11  
Sun W  Bennett VC  Eggins SM  Kamenetsky VS  Arculus RJ 《Nature》2003,422(6929):294-297
Variations in the 187Os/188Os isotopic signature of mantle and mantle-derived rocks have been thought to provide a powerful chemical tracer of deep Earth structure. Many studies have inferred from such data that a long-lived, high-rhenium component exists in the deep mantle (187Re is the parent isotope decaying to 187Os, with a half-life of approximately 42 billion years), and that this reservoir probably consists of subducted oceanic crust. The interpretation of these isotopic signatures is, however, dependent on accurate estimates of rhenium and osmium concentrations in all of the main geochemical reservoirs, and the crust has generally been considered to be a minor contributor to such global budgets. In contrast, we here present observations of high rhenium concentrations and low Yb/Re ratios in arc-type melt inclusions. These results indicate strong enrichment of rhenium in undegassed arc rocks, and consequently the continental crust, which results in a crustal estimate of 2 p.p.b. rhenium, as compared to previous estimates of 0.4-0.2 p.p.b. (refs 4, 5). Previous determinations of rhenium in arc materials, which were largely measured on subaerially erupted samples, are likely to be in error owing to rhenium loss during degassing. High mantle-to-crust rhenium fluxes, as observed here, require a revaluation of geochemical models based on the 187Re-187Os decay system.  相似文献   

4.
Mantle wedge control on back-arc crustal accretion   总被引:1,自引:0,他引:1  
Martinez F  Taylor B 《Nature》2002,416(6879):417-420
At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away. In back-arc basins, the subducting slab is an important control on the pattern of mantle advection and melt extraction, as well as on compositional and fluid gradients. Modelling studies predict significant mantle wedge effects on back-arc spreading processes. Here we show that various spreading centres in the Lau back-arc basin exhibit enhanced, diminished or normal magma supply, which correlates with distance from the arc volcanic front but not with spreading rate. To explain this correlation we propose that depleted upper-mantle material, generated by melt extraction in the mantle wedge, is overturned and re-introduced beneath the back-arc basin by subduction-induced corner flow. The spreading centres experience enhanced melt delivery near the volcanic front, diminished melting within the overturned depleted mantle farther from the corner and normal melting conditions in undepleted mantle farther away. Our model explains fundamental differences in crustal accretion variables between back-arc and mid-ocean settings.  相似文献   

5.
Lee CT  Yin Q  Rudnick RL  Jacobsen SB 《Nature》2001,411(6833):69-73
Stable continental regions, free from tectonic activity, are generally found only within ancient cratons-the centres of continents which formed in the Archaean era, 4.0-2.5 Gyr ago. But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stable, whereas some older (late Archaean) regions have been tectonically disturbed, suggesting that age alone does not determine lithospheric strength and crustal stability. Here we report rhenium-osmium isotope and mineral compositions of peridotite xenoliths from two regions of the Cordilleran mountain belt. We found that the younger, undeformed Colorado plateau is underlain by lithospheric mantle that is 'depleted' (deficient in minerals extracted by partial melting of the rock), whereas the older (Archaean), yet deformed, southern Basin and Range province is underlain by 'fertile' lithospheric mantle (not depleted by melt extraction). We suggest that the apparent relationship between composition and lithospheric strength, inferred from different degrees of crustal deformation, occurs because depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock). This allows the depleted mantle to form a thicker thermal boundary layer between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface. The inference that not all Archaean crust developed a strong and thick thermal boundary layer leads to the possibility that such ancient crust may have been overlooked because of its intensive reworking or lost from the geological record owing to preferential recycling.  相似文献   

6.
Scherstén A  Elliott T  Hawkesworth C  Norman M 《Nature》2004,427(6971):234-237
Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets (187)Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled (186)Os-(187)Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile ('iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also 'incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted (186)Os-(187)Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.  相似文献   

7.
Sobolev AV  Hofmann AW  Jochum KP  Kuzmin DV  Stoll B 《Nature》2011,476(7361):434-437
Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5?billion years (Gyr). However, if such correlations are produced by mixing of unrelated mantle components they will have no direct age significance. Re-Os decay model ages take into account the mixing of sources with different histories, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction. Here we report the first data on (87)Sr/(86)Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200-650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique 'time stamp' on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200-650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1)?cm?yr(-1), much faster than previously thought.  相似文献   

8.
The total PGE amounts of mantle peridotites in the Dazhuka ophiolite, Tibet, are 28.37—50.67 ng/g, slightly higher than those of mantle peridotites in the primitive mantle, and typical ophiolites in the world, and the Alps-type mantle peridotites. The PGE distribution patterns in the Dazhuka mantle peridotites are also different from those of the mantle peridotites of partial melting relict origin. The Dazhuka mantle peridotites have relatively high total PGE amounts and are enriched in Pt, Pd, and Ru. Their PGE distribution patterns belong to the positively inclined- or swallow-type patterns. The PGE distribution patterns in the mantle peridotites of partial melting relict origin belong to the negative-slope patterns or flat patterns. This reflects the unique features of the upper mantle in this region. Relative enrichment in Pt and Pd, as well as in the incompatible elements Cu, Au, Cs, Rb, Ba, Th, U and LREE, indicates that the partial melting-derived relict mantle peridotites in the Dazhuka ophiolite had experienced intensive permeating and mixing processes of the melt and fluid both containing abundant incompatible elements.  相似文献   

9.
Eiler JM  Schiano P  Kitchen N  Stolper EM 《Nature》2000,403(6769):530-534
Mid-ocean-ridge basalts (MORBs) are the most abundant terrestrial magmas and are believed to form by partial melting of a globally extensive reservoir of ultramafic rocks in the upper mantle. MORBs vary in their abundances of incompatible elements (that is, those that partition into silicate liquids during partial melting) and in the isotopic ratios of several radiogenic isotope systems. These variations define a spectrum between 'depleted' and 'enriched' compositions, characterized by respectively low and high abundances of incompatible elements. Compositional variations in the sources of MORBs could reflect recycling of subducted crustal materials into the source reservoir, or any of a number of processes of intramantle differentiations. Variations in (18)O/(16)O (principally sensitive to the interaction of rocks with the Earth's hydrosphere) offer a test of these alternatives. Here we show that (18)O/(16)O ratios of MORBs are correlated with aspects of their incompatible-element chemistry. These correlations are consistent with control of the oxygen-isotope and incompatible-element geochemistry of MORBs by a component of recycled crust that is variably distributed throughout their upper mantle sources.  相似文献   

10.
Pearson DG  Parman SW  Nowell GM 《Nature》2007,449(7159):202-205
Although Earth's continental crust is thought to have been derived from the mantle, the timing and mode of crust formation have proven to be elusive issues. The area of preserved crust diminishes markedly with age, and this can be interpreted as being the result of either the progressive accumulation of new crust or the tectonic recycling of old crust. However, there is a disproportionate amount of crust of certain ages, with the main peaks being 1.2, 1.9, 2.7 and 3.3 billion years old; this has led to a third model in which the crust has grown through time in pulses, although peaks in continental crust ages could also record preferential preservation. The 187Re-187Os decay system is unique in its ability to track melt depletion events within the mantle and could therefore potentially link the crust and mantle differentiation records. Here we employ a laser ablation technique to analyse large numbers of osmium alloy grains to quantify the distribution of depletion ages in the Earth's upper mantle. Statistical analysis of these data, combined with other samples of the upper mantle, show that depletion ages are not evenly distributed but cluster in distinct periods, around 1.2, 1.9 and 2.7 billion years. These mantle depletion events coincide with peaks in the generation of continental crust and so provide evidence of coupled, global and pulsed mantle-crust differentiation, lending strong support to pulsed models of continental growth by means of large-scale mantle melting events.  相似文献   

11.
Whole-mantle convection and the transition-zone water filter   总被引:8,自引:0,他引:8  
Bercovici D  Karato S 《Nature》2003,425(6953):39-44
Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.  相似文献   

12.
Primary carbonatite melt from deeply subducted oceanic crust   总被引:2,自引:0,他引:2  
Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.  相似文献   

13.
Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr.  相似文献   

14.
Continental mantle signature of Bushveld magmas and coeval diamonds   总被引:2,自引:0,他引:2  
Richardson SH  Shirey SB 《Nature》2008,453(7197):910-913
The emplacement of the 2.05-billion-year-old Bushveld complex, the world's largest layered intrusion and platinum-group element (PGE) repository, is a singular event in the history of the Kaapvaal craton of southern Africa, one of Earth's earliest surviving continental nuclei. In the prevailing model for the complex's mineralization, the radiogenic strontium and osmium isotope signatures of Bushveld PGE ores are attributed to continental crustal contamination of the host magmas. The scale of the intrusion and lateral homogeneity of the PGE-enriched layers, however, have long been problematical for the crustal contamination model, given the typically heterogeneous nature of continental crust. Furthermore, the distribution of Bushveld magmatism matches that of seismically anomalous underlying mantle, implying significant interaction before emplacement in the crust. Mineral samples of the ancient 200-km-deep craton keel, encapsulated in macrodiamonds and entrained by proximal kimberlites, reveal the nature of continental mantle potentially incorporated by Bushveld magmas. Here we show that sulphide inclusions in approximately 2-billion-year-old diamonds from the 0.5-billion-year-old Venetia and 1.2-billion-year-old Premier kimberlites (on opposite sides of the complex) have initial osmium isotope ratios even more radiogenic than those of Bushveld sulphide ore minerals. Sulphide Re-Os and silicate Sm-Nd and Rb-Sr isotope compositions indicate that continental mantle harzburgite and eclogite components, in addition to the original convecting mantle magma, most probably contributed to the genesis of both the diamonds and the Bushveld complex. Coeval diamonds provide key evidence that the main source of Bushveld PGEs is the mantle rather than the crust.  相似文献   

15.
甘肃西部马鬃山超镁铁质杂岩岩石学地球化学信息及意义   总被引:1,自引:3,他引:1  
马鬃山岩体在空间上分为有成因联系的两部分,主岩体为具有环状分异特征的辉长岩岩体,中心相为辉长岩,边缘相为闪长岩.主岩体东南子岩体为橄榄二辉岩岩体.赋存于其中的岩石学和地球化学信息暗示马鬃山杂岩体形成于活动大陆边缘张裂构造环境,为应力释放期的产物,岩浆来源于具有E—MORB性质的陆下岩石圈地幔与软流圈的边界。较大程度部分熔融产生的岩浆在上升途中同化了陆壳围岩。  相似文献   

16.
The origin of the isotopic signature of Indian mid-ocean ridge basalts has remained enigmatic, because the geochemical composition of these basalts is consistent either with pollution from recycled, ancient altered oceanic crust and sediments, or with ancient continental crust or lithosphere. The radiogenic isotopic signature may therefore be the result of contamination of the upper mantle by plumes containing recycled altered ancient oceanic crust and sediments, detachment and dispersal of continental material into the shallow mantle during rifting and breakup of Gondwana, or contamination of the upper mantle by ancient subduction processes. The identification of a process operating on a scale large enough to affect major portions of the Indian mid-ocean ridge basalt source region has been a long-standing problem. Here we present hafnium and lead isotope data from across the Indian-Pacific mantle boundary at the Australian-Antarctic discordance region of the Southeast Indian Ridge, which demonstrate that the Pacific and Indian upper mantle basalt source domains were each affected by different mechanisms. We infer that the Indian upper-mantle isotope signature in this region is affected mainly by lower continental crust entrained during Gondwana rifting, whereas the isotope signature of the Pacific upper mantle is influenced predominantly by ocean floor subduction-related processes.  相似文献   

17.
Barium (Ba) isotopes can be used as potential tracers for crustal material recycling in the mantle. Determination of the Ba isotope composition of the depleted mantle is essential for such applications. However, Ba isotope data for mantle-derived basalts are still rare. In this study, we reported high-precision Ba isotope data of 30 oceanic basalts including 25 mid-ocean ridge basalts (MORBs) from geochemically and geologically diverse mid-ocean ridge segments and five back-arc basin basalts. The δ138/134Ba values of these samples varied from ?0.06‰ to +0.11‰, with no systematic cross-region variation. Together with published data, we constrained the average δ138/134Ba of global MORBs to +0.05‰±0.09‰ (2 standard deviation, n = 51). Based on depleted MORBs that have (La/Sm)N < 0.8, low 87Sr/86Sr (< 0.70263), and low Ba/Th < 71.3, we estimated the average δ138/134Ba of the depleted MORB mantle (DMM) as + 0.05‰ ± 0.05‰ (2SD, n = 16) that is significantly lower than the DMM (≈ 0.14‰) reported previously. If a new estimation of the DMM is applied, it is unreasonable to infer that the Ba isotope signatures of the “enriched-type” MORBs (E-MORBs) could be attributed to pervasive sediment recycling in the upper mantle. We, therefore, conclude that the Ba isotope compositions of the E-MORBs could be sourced from the incorporation of subducted altered oceanic crust and/or sediments depending on the Ba isotope composition and other geochemical information of the local mantle.  相似文献   

18.
Parman SW  Kurz MD  Hart SR  Grove TL 《Nature》2005,437(7062):1140-1143
High 3He/4He ratios found in ocean island basalts are the main evidence for the existence of an undegassed mantle reservoir. However, models of helium isotope evolution depend critically on the chemical behaviour of helium during mantle melting. It is generally assumed that helium is strongly enriched in mantle melts relative to uranium and thorium, yet estimates of helium partitioning in mantle minerals have produced conflicting results. Here we present experimental measurements of helium solubility in olivine at atmospheric pressure. Natural and synthetic olivines were equilibrated with a 50% helium atmosphere and analysed by crushing in vacuo followed by melting, and yield a minimum olivine-melt partition coefficient of 0.0025 +/- 0.0005 (s.d.) and a maximum of 0.0060 +/- 0.0007 (s.d.). The results indicate that helium might be more compatible than uranium and thorium during mantle melting and that high 3He/4He ratios can be preserved in depleted residues of melting. A depleted source for high 3He/4He ocean island basalts would resolve the apparent discrepancy in the relative helium concentrations of ocean island and mid-ocean-ridge basalts.  相似文献   

19.
房山岩体是华北东部典型的燕山期中酸性侵入杂岩体,其地球化学特征为富Si、Na、Al、Sr,亏损高场强元素(Nb、Ta),轻重稀土分异强烈,Sr-Nd同位素具有类似EMI型富集地幔的特点,表明其岩浆来自于加厚下地壳的部分熔融,并且中生代华北东部下地壳已经被早先的富集岩石圈地幔置换.不同基性程度岩浆的不完全混合是形成微粒闪长质包体的原因.侵入杂岩的角闪石压力计显示下地壳部分熔融形成的中酸性岩浆先后在19~8 km里的深度范围内结晶就位.古太平洋板块在地幔过渡带深度于早白垩世水平俯冲至太行山一线,洋壳脱水导致上覆地幔部分熔融,后者成为加热下地壳部分熔融的热源.  相似文献   

20.
The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号