首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Structure of co-crystals of tropomyosin and troponin   总被引:4,自引:0,他引:4  
S P White  C Cohen  G N Phillips 《Nature》1987,325(6107):826-828
Troponin, a Ca2+-sensitive complex, regulates the motions of tropomyosin on the thin filaments in many muscles. It has three subunits, each with a different architecture and function: TnC binds Ca2+; TnI binds to actin and inhibits contraction; and TnT binds one complex to each tropomyosin molecule. The troponin complex has an elongated shape with TnC and TnI forming a globular 'head' region and TnT a long (approximately 160 A) 'tail'. TnT binds to two widely separated regions of tropomyosin: the head region of the complex is near Cys 190 of tropomyosin and the tail region is near the overlapping joint that links the tropomyosin molecules into filaments. Here we report the X-ray structure determination at 17 A resolution of glutaraldehyde-treated tropomyosin crystals in which native troponin complex or fragments of TnT have been bound. Our results show that the amino-terminal tail end of TnT spans the head-to-tail joint of the tropomyosin filaments, and that the 'head' region of the whole troponin complex binds approximately 200 A away near residues 150-180 of the tropomyosin molecule.  相似文献   

2.
肌钙蛋白C-肌钙蛋白Ⅰ亲和层析动力学的模型   总被引:1,自引:0,他引:1  
肌钙蛋白(Tn)I有着极强的心肌特异性,心肌肌钙蛋白是唯一存在于心肌细胞中的异构体,可以通过检测患者血液中的心肌TnI含量来确诊急性心肌梗塞。根据在钙离子存在下,TnC和TnI特异结合的特性,可以利用亲和层析提取纯化TnI。根据TnI从亲和层析柱的穿透曲线,对Arnold等人提出的孔内扩散模型进行了分析,证明孔内扩散过程不是此亲和层析过程中的限速步骤。在缓冲液体系(pH8.0)中,提出了包括以一个正向二级、逆向一级来描述TnC—TnI反应速率方程,并用实验验证了该模型的正确性,从而首次阐明了TnC—TnI提取纯化体系的动力学机制,揭示了该过程的限速步骤为TnC—TnI反应过程。  相似文献   

3.
Tropomyosins are a closely related family of proteins with a dimeric alpha-coiled-coil structure. Skeletal isoforms are composed of two types of subunits, alpha and beta which, in turn, are assorted into two main molecular species alpha alpha and alpha beta. Both isoforms are present in different molar ratios in individual skeletal muscle types. In small mammals, however, only alpha-chain is expressed in cardiac muscle. Tropomyosin, in association with the troponin complex (troponin-I, -T and -C) plays a central role in the Ca2+-dependent regulation of vertebrate striated muscle contraction. On the other hand, despite structural similarities with the striated isoforms, the function of this protein in smooth muscle and non-muscle cells remains unknown, because in these cells contraction is thought to be regulated by myosin-linked processes independently of tropomyosin. Here we report the nucleotide sequences of cloned complementary DNAs for rat striated and smooth muscle alpha-tropomyosin. Comparison of the derived amino-acid sequences reveals the existence of tissue-specific peptides that delimit the putative troponin-I and troponin-T binding domains of tropomyosin. S1-nuclease mapping studies reveal the existence of three distinct alpha-tropomyosin messenger RNA isoforms each encoding a different protein; these isoforms are tissue-specific, developmentally regulated and most probably encoded by the same gene.  相似文献   

4.
To investigate the effect of doxorubicin(DOX) on gene expression of the myocardial sarcoplasmic reticulum (SR)Ca^2 transport proteins and the mechanism of taurine(Tau) protecting cardiac muscle cells, 9 rabbits were injected with DOX , 8 rabbits with DOX and Tau, and 9 rabbits with normal saline. Cardiac function , concentration of calcium in cardiomyocytes ( Myo [ Ca^2 ]i ), activity of SR Ca^2 -ATPase (SERCA2a) , level of SERCA2a mRNA and Ca^2 released channels(RYR2) mRNA were detected. The left ventricle tissues were observed by electron microscopy. The results showed that cardiac index, left ventricular systolic pressure, activity of SR Ca^2 -ATPase and level of SERCA2a mRNA decreased , while Myo[ Ca^2 ]i increased in DOX-treated rabbits. DOX could not affect the level of RYR2 mRNA. Tau intervention could alleviate the increase of left ventricular diastolic pressure, Myo[ Ca^2 ] i and the decrease of SERCA2a mRNA induced by doxorubicin. Tile results suggested that downregulation of SERCA2a gene expression was an important mechanism of DOX-induced cardiomyopathy and that Tau could partially improve the heart function by reducing calcium overload and alleviating downregulation of SERCA2a mRNA.  相似文献   

5.
K Fujimori  M Sorenson  O Herzberg  J Moult  F C Reinach 《Nature》1990,345(6271):182-184
The contraction of skeletal muscle is regulated by calcium binding to troponin C (TnC). TnC consists of two spatially independent domains, each of which contains two metal ion binding sites. Calcium binding to the regulatory sites of the N-terminal domain triggers muscle contraction by a series of conformational changes. Site-directed mutagenesis offers a means of elucidating the links in this signal path between TnC and actin-myosin crossbridges. Such mapping is possible if the mutants shift the equilibrium between 'on' and 'off' states of the regulatory complex while maintaining the coupling between calcium binding and tension development. Candidate amino-acid residues for yielding this information would be in positions remote from the calcium-binding sites and from the site of development of tension. Analysis of the crystal structure of TnC and of the model of the calcium-activated molecule has enabled us to identify two such residues: Glu 57 and Glu 88. In separate experiments we have replaced each of these residues by lysines. The resulting reduction in calcium affinity indicates that these residues have a long-range effect on calcium binding. This result may reflect the formation of a salt bridge between positions 57 and 88 that is not present in the native molecule. Moreover, the level of tension recovery when the mutants are incorporated into muscle suggests that the interaction between TnC and other muscle components has also been altered. Thus, these residues may participate in the contraction signal transmission.  相似文献   

6.
J M Wilkinson  R J Grand 《Nature》1978,271(5640):31-35
The sequence of troponin I from fast and slow skeletal and cardiac muscle shows strong homology in the region which binds to actin and is responsible for inhibition of the actomyosin AT Pase. More differences are found in the N-terminal region which binds to troponin C.  相似文献   

7.
Yang YD  Cho H  Koo JY  Tak MH  Cho Y  Shim WS  Park SP  Lee J  Lee B  Kim BM  Raouf R  Shin YK  Oh U 《Nature》2008,455(7217):1210-1215
Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca(2+)-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca(2+)-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca(2+)-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.  相似文献   

8.
Kho C  Lee A  Jeong D  Oh JG  Chaanine AH  Kizana E  Park WJ  Hajjar RJ 《Nature》2011,477(7366):601-605
The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.  相似文献   

9.
Robinson IM  Ranjan R  Schwarz TL 《Nature》2002,418(6895):336-340
At nerve terminals, a focal and transient increase in intracellular Ca(2+) triggers the fusion of neurotransmitter-filled vesicles with the plasma membrane. The most extensively studied candidate for the Ca(2+)-sensing trigger is synaptotagmin I, whose Ca(2+)-dependent interactions with acidic phospholipids and syntaxin have largely been ascribed to its C(2)A domain, although the C(2)B domain also binds Ca(2+) (refs 7, 8). Genetic tests of synaptotagmin I have been equivocal as to whether it is the Ca(2+)-sensing trigger of fusion. Synaptotagmin IV, a related isoform that does not bind Ca(2+) in the C(2)A domain, might be an inhibitor of release. We mutated an essential aspartate of the Ca(2+)-binding site of the synaptotagmin I C(2)A domain and expressed it in Drosophila lacking synaptotagmin I. Here we show that, despite the disruption of the binding site, the Ca(2+)-dependent properties of transmission were not altered. Similarly, we found that synaptotagmin IV could substitute for synaptotagmin I. We conclude that the C(2)A domain of synaptotagmin is not required for Ca(2+)-dependent synaptic transmission, and that synaptotagmin IV promotes rather than inhibits transmission.  相似文献   

10.
By the analyses of Guliya ice core on the Tibetan Plateau, it was found that the calcium (Ca^2 ) originated from the terrestrial source is the main cation of soluble aerosol and a good proxy of the atmospheric component and environment in the mountain ice core located in the mid-low latitude arid regions. Evident variation of Ca^2 concentration has been found in the Guliya ice core since the Last lnterglaciation with two relatively strong increase periods and two weak increase periods. These variations are generally related to climatic changes: high Ca^2 concentration periods coincide with cold periods and low Ca^2 concentration periods coincide with warm periods. However, Ca^2 concentration does not always decrease (increase) with climate warming (cooling). The magnitude and phase of Ca^2 concentration does not always match temperature either. The changes of atmospheric circulation, land surface condition and atmospheric humidity might be important factors which influence Ca^2 concentration besides temperature.  相似文献   

11.
A calcium sensor in the sodium channel modulates cardiac excitability.   总被引:11,自引:0,他引:11  
Sodium channels are principal molecular determinants responsible for myocardial conduction and maintenance of the cardiac rhythm. Calcium ions (Ca2+) have a fundamental role in the coupling of cardiac myocyte excitation and contraction, yet mechanisms whereby intracellular Ca2+ may directly modulate Na channel function have yet to be identified. Here we show that calmodulin (CaM), a ubiquitous Ca2+-sensing protein, binds to the carboxy-terminal 'IQ' domain of the human cardiac Na channel (hH1) in a Ca2+-dependent manner. This binding interaction significantly enhances slow inactivation-a channel-gating process linked to life-threatening idiopathic ventricular arrhythmias. Mutations targeted to the IQ domain disrupted CaM binding and eliminated Ca2+/CaM-dependent slow inactivation, whereas the gating effects of Ca2+/CaM were restored by intracellular application of a peptide modelled after the IQ domain. A naturally occurring mutation (A1924T) in the IQ domain altered hH1 function in a manner characteristic of the Brugada arrhythmia syndrome, but at the same time inhibited slow inactivation induced by Ca2+/CaM, yielding a clinically benign (arrhythmia free) phenotype.  相似文献   

12.
De Stefani D  Raffaello A  Teardo E  Szabò I  Rizzuto R 《Nature》2011,476(7360):336-340
Mitochondrial Ca(2+) homeostasis has a key role in the regulation of aerobic metabolism and cell survival, but the molecular identity of the Ca(2+) channel, the mitochondrial calcium uniporter, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator, is present in organisms in which mitochondrial Ca(2+) uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca(2+) uptake. MCU overexpression doubled the matrix Ca(2+) concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca(2+) concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca(2+) uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.  相似文献   

13.
Yuan P  Leonetti MD  Hsiung Y  MacKinnon R 《Nature》2012,481(7379):94-97
High-conductance voltage- and Ca(2+)-activated K(+) channels function in many physiological processes that link cell membrane voltage and intracellular Ca(2+) concentration, including neuronal electrical activity, skeletal and smooth muscle contraction, and hair cell tuning. Like other voltage-dependent K(+) channels, Ca(2+)-activated K(+) channels open when the cell membrane depolarizes, but in contrast to other voltage-dependent K(+) channels, they also open when intracellular Ca(2+) concentrations rise. Channel opening by Ca(2+) is made possible by a structure called the gating ring, which is located in the cytoplasm. Recent structural studies have defined the Ca(2+)-free, closed, conformation of the gating ring, but the Ca(2+)-bound, open, conformation is not yet known. Here we present the Ca(2+)-bound conformation of the gating ring. This structure shows how one layer of the gating ring, in response to the binding of Ca(2+), opens like the petals of a flower. The degree to which it opens explains how Ca(2+) binding can open the transmembrane pore. These findings present a molecular basis for Ca(2+) activation of K(+) channels and suggest new possibilities for targeting the gating ring to treat conditions such as asthma and hypertension.  相似文献   

14.
R DiPolo  H R Rojas  L Beaugé 《Nature》1979,281(5728):229-230
Nerve cells can maintain a very low intracellular calcium concentration ([Ca2+]i) against large Ca2+ electrochemical gradients (see ref. 1 for review). The properties of the calcium efflux from these cells depend on [Ca2+]i (ref. 2), and within the physiological range, most Ca efflux depends on ATP (which stimulates with high affinity) and is insensitive to Na1, Na0 and Ca0 (uncoupled Ca efflux). When the [Ca2+]i is well above the physiological range, Ca efflux becomes only partially dependent on ATP (acting now with low affinity), is inhibited by Nai and is stimulated by Na0 and Ca0 (Na--Ca exchange). Orthovanadate, a powerful inhibitor of the (Na+ + K+)ATPase and the Na pump, also inhibits the Ca-stimulated ATPase activity, which is the enzymatic basis for the uncoupled Ca pump, in human red cells. The experiments reported here show that in squid axons the ATP-dependent uncoupled Ca efflux can be fully and reversibly inhibited by vanadate, whereas concentrations of vanadate 10 times higher have no effect on the Na--Ca exchange. This is another indication that the uncoupled Ca efflux represents an ATP-driven Ca pump, and supports the suggestion that the uncoupled Ca efflux and Na--Ca exchange are mediated by different mechanisms.  相似文献   

15.
Han S  Tang R  Anderson LK  Woerner TE  Pei ZM 《Nature》2003,425(6954):196-200
Extracellular Ca(2+) (Ca(2+)(o)) is required for various physiological and developmental processes in animals and plants. In response to varied Ca(2+)(o) levels, plants maintain relatively constant internal Ca(2+) content, suggesting a precise regulatory mechanism for Ca(2+) homeostasis. However, little is known about how plants monitor Ca(2+)(o) status and whether Ca(2+)(o)-sensing receptors exist. The effects of Ca(2+)(o) on guard cells in promoting stomatal closure by inducing increases in the concentration of cytosolic Ca(2+) ([Ca(2+)](i)) provide a clue to Ca(2+)(o) sensing. Here we have used a functional screening assay in mammalian cells to isolate an Arabidopsis complementary DNA clone encoding a Ca(2+)-sensing receptor, CAS. CAS is localized to the plasma membrane, exhibits low-affinity/high-capacity Ca(2+) binding, and mediates Ca(2+)(o)-induced [Ca(2+)](i) increases. CAS is expressed predominantly in the shoot, including guard cells. Repression of CAS disrupts Ca(2+)(o) signalling in guard cells, and impairs bolting (swift upward growth at the transition to seed production) in response to Ca(2+) deficiency, so we conclude that CAS may be a primary transducer of Ca(2+)(o) in plants.  相似文献   

16.
Kang TM  Hilgemann DW 《Nature》2004,427(6974):544-548
The cardiac Na+/Ca2+ exchanger (NCX1; ref. 2) is a bi-directional Ca2+ transporter that contributes to the electrical activity of the heart. When, and if, Ca2+ is exported or imported depends on the Na+/Ca2+ exchange ratio. Whereas a ratio of 3:1 (Na+:Ca2+) has been indicated by Ca2+ flux equilibrium studies, a ratio closer to 4:1 has been indicated by exchange current reversal potentials. Here we show, using an ion-selective electrode technique to quantify ion fluxes in giant patches, that ion flux ratios are approximately 3.2 for maximal transport in either direction. With Na+ and Ca2+ on both sides of the membrane, net current and Ca2+ flux can reverse at different membrane potentials, and inward current can be generated in the absence of cytoplasmic Ca2+, but not Na+. We propose that NCX1 can transport not only 1 Ca2+ or 3 Na+ ions, but also 1 Ca2+ with 1 Na+ ion at a low rate. Therefore, in addition to the major 3:1 transport mode, import of 1 Na+ with 1 Ca2+ defines a Na+-conducting mode that exports 1 Ca2+, and an electroneutral Ca2+ influx mode that exports 3 Na+. The two minor transport modes can potentially determine resting free Ca2+ and background inward current in heart.  相似文献   

17.
Toyoshima C  Nomura H 《Nature》2002,418(6898):605-611
In skeletal muscle, calcium ions are transported (pumped) against a concentration gradient from the cytoplasm into the sarcoplasmic reticulum, an intracellular organelle. This causes muscle cells to relax after cytosolic calcium increases during excitation. The Ca(2+) ATPase that carries out this pumping is a representative P-type ion-transporting ATPase. Here we describe the structure of this ion pump at 3.1 A resolution in a Ca(2+)-free (E2) state, and compare it with that determined previously for the Ca(2+)-bound (E1Ca(2+)) state. The structure of the enzyme stabilized by thapsigargin, a potent inhibitor, shows large conformation differences from that in E1Ca(2+). Three cytoplasmic domains gather to form a single headpiece, and six of the ten transmembrane helices exhibit large-scale rearrangements. These rearrangements ensure the release of calcium ions into the lumen of sarcoplasmic reticulum and, on the cytoplasmic side, create a pathway for entry of new calcium ions.  相似文献   

18.
Mackler JM  Drummond JA  Loewen CA  Robinson IM  Reist NE 《Nature》2002,418(6895):340-344
Synaptotagmin is a synaptic vesicle protein that is postulated to be the Ca(2+) sensor for fast, evoked neurotransmitter release. Deleting the gene for synaptotagmin (syt(null)) strongly suppresses synaptic transmission in every species examined, showing that synaptotagmin is central in the synaptic vesicle cycle. The cytoplasmic region of synaptotagmin contains two C(2) domains, C(2)A and C(2)B. Five, highly conserved, acidic residues in both the C(2)A and C(2)B domains of synaptotagmin coordinate the binding of Ca(2+) ions, and biochemical studies have characterized several in vitro Ca(2+)-dependent interactions between synaptotagmin and other nerve terminal molecules. But there has been no direct evidence that any of the Ca(2+)-binding sites within synaptotagmin are required in vivo. Here we show that mutating two of the Ca(2+)-binding aspartate residues in the C(2)B domain (D(416,418)N in Drosophila) decreased evoked transmitter release by >95%, and decreased the apparent Ca(2+) affinity of evoked transmitter release. These studies show that the Ca(2+)-binding motif of the C(2)B domain of synaptotagmin is essential for synaptic transmission.  相似文献   

19.
Luik RM  Wang B  Prakriya M  Wu MM  Lewis RS 《Nature》2008,454(7203):538-542
Ca(2+)-release-activated Ca(2+) (CRAC) channels generate sustained Ca(2+) signals that are essential for a range of cell functions, including antigen-stimulated T lymphocyte activation and proliferation. Recent studies have revealed that the depletion of Ca(2+) from the endoplasmic reticulum (ER) triggers the oligomerization of stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and its redistribution to ER-plasma membrane (ER-PM) junctions where the CRAC channel subunit ORAI1 accumulates in the plasma membrane and CRAC channels open. However, how the loss of ER Ca(2+) sets into motion these coordinated molecular rearrangements remains unclear. Here we define the relationships among [Ca(2+)](ER), STIM1 redistribution and CRAC channel activation and identify STIM1 oligomerization as the critical [Ca(2+)](ER)-dependent event that drives store-operated Ca(2+) entry. In human Jurkat leukaemic T cells expressing an ER-targeted Ca(2+) indicator, CRAC channel activation and STIM1 redistribution follow the same function of [Ca(2+)](ER), reaching half-maximum at approximately 200 microM with a Hill coefficient of approximately 4. Because STIM1 binds only a single Ca(2+) ion, the high apparent cooperativity suggests that STIM1 must first oligomerize to enable its accumulation at ER-PM junctions. To assess directly the causal role of STIM1 oligomerization in store-operated Ca(2+) entry, we replaced the luminal Ca(2+)-sensing domain of STIM1 with the 12-kDa FK506- and rapamycin-binding protein (FKBP12, also known as FKBP1A) or the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR, also known as FRAP1). A rapamycin analogue oligomerizes the fusion proteins and causes them to accumulate at ER-PM junctions and activate CRAC channels without depleting Ca(2+) from the ER. Thus, STIM1 oligomerization is the critical transduction event through which Ca(2+) store depletion controls store-operated Ca(2+) entry, acting as a switch that triggers the self-organization and activation of STIM1-ORAI1 clusters at ER-PM junctions.  相似文献   

20.
McNaughton PA  Cervetto L  Nunn BJ 《Nature》1986,322(6076):261-263
Measurement of the free calcium concentration within a photo-receptor outer segment has been considered an important aim since the proposal by Hagins and Yoshikami that the primary event in phototransduction is a release of Ca (2+) inside the cell. More recent evidence has cast doubt on the calcium hypothesis, and the observations of Yau and Nakatani and Matthews et al. suggest that the internal Ca (2+) concentration ([Ca (2+)]i), may decrease after a flash of light. In the present study we have measured [Ca (2+)]i directly by using a new method for incorporating the Ca-sensitive photoprotein aequorin into an isolated rod. We report that the light response is accompanied by a decrease in [Ca (2+)]i, caused by the closure of light-sensitive channels which are the main route for Ca (2+) entry into the outer segment. Of the Ca (2+) entering through light-sensitive channels, about 95% is sequestered by a rapid and reversible buffering mechanism. Calcium is removed from the cell by an electrogenic pump in which 3 Na (+) ions are exchanged for each Ca (2+); the pump is highly active and the free Ca (2+) in the cell declines with a time constant of ~0.5 s after a flash of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号