首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于中国气象局化学天气数值预报系统(CUACE)模式下2015年1月至2018年12月预报产品及同期实况监测资料,通过对比和分析,从4种污染物的质量浓度、首要污染物、AQI及其等级等方面,评估CUACE模式对银川市区重污染天气的预报性能.结果表明,CUACE模式能较好地模拟2015—2018年中度以上污染天气的AQI及PM2.5,PM10,O3质量浓度的变化趋势,其中,AQI与O3质量浓度的预报值偏小,NO2,PM10质量浓度的预报值接近实测值;AQI与PM2.5,NO2,O3质量浓度预报值与实测值之间的相关系数为0.48~0.70;实测AQI等级为4,5,6级时,表现出预报值偏小2级的概率较大、偏小1至3级的概率为20%~24%、偏小3级的概率为50%;首要污染物为颗粒物时,预报正确率为73.8%~75.0%,首要污染物为O3时,预报的正确率较低.CUACE模式的整体...  相似文献   

2.
为行政部门有效治理城市环境和生态保护,科学客观评价空气质量极为重要。本研究以铜仁市为对象,统计分析了2015—2020年铜仁市空气污染物变化动态特征,同时利用属性识别模型综合评价了铜仁市空气质量水平。研究结果表明:1)铜仁市主要污染物是PM2.5、PM10和O3,其污染程度为PM2.5>PM10≈O3,PM2.5和PM10浓度水平处于Ⅱ级标准,PM2.5在冬季处于不达标水平,PM10于2020年达Ⅰ级以下标准,有显著好转,O3浓度2016年以来显著增加,存在污染风险。2)铜仁市近几年空气综合质量均为Ⅰ级标准,但空气质量综合水平呈下降趋势,主要原因在于PM2.5作为首要的空气污染物,污染水平一直没有得到有效控制。此外,O3污染程度风险增加。因此,PM2.5和O3  相似文献   

3.
基于信阳市2017—2020年细颗粒物(PM2.5)和臭氧(O3)浓度数据及同期地面气象观测资料,利用Kolmogorov-Zurbenko(KZ)滤波法将原始浓度序列分解为短期分量、季节分量和长期分量,采用逐步回归方法建立污染物基线分量和短期分量与相应尺度气象要素的线性回归模型,通过对残差进行滤波和序列重建,得到去除气象影响的污染物长期变化趋势,该浓度仅与污染物的排放量有关。结果表明,PM2.5和O3浓度的波动主要由污染源排放及气象条件的短期变化和季节变化引起,气象条件对PM2.5季节分量和O3长期分量影响较大。信阳市PM2.5污染排放减弱,O3污染排放先升高,在2018年10月后降低。由于污染排放导致的2017—2020年PM2.5和O3长期分量分别降低3.5、1.5μg/(m3·a)。  相似文献   

4.
为了解呼和浩特大气污染防治效果,选取呼和浩特市2017—2022年的主要大气污染物、气象要素数据,对污染物浓度的年、月变化、浓度比值、相关性进行分析,利用后向轨迹聚类对2020年3月进行分析。分析结果表明:呼和浩特市2017—2022年空气质量为优、良的天数呈上升趋势。各污染物浓度年变化特征明显,各污染物的浓度变化趋势除O3均呈“U”形分布。PM2.5、PM10污染是呼和浩特市大气污染主要研究对象,PM2.5/PM10的值有明显的月变化特征,5月份为全年最低值。PM2.5和PM10高度相关性,而NO2和SO2与PM2.5、PM10均呈现正相关性。受气象要素影响,PM2.5和PM10污染物浓度变化趋势为夏低冬高,7、8月降雨量大,有利于空气质量改善,降水可带走、稀释更多的污染物。而后向轨迹聚类分析得4条气团...  相似文献   

5.
基于2016—2020年成都平原经济区城市空气质量监测数据,应用空气质量综合指数评价法、Pearson相关分析法,对成都平原经济区空气质量时空变化特征、成都市主要污染物变化特征进行了研究.结果表明:1) 2016—2020年,成都平原经济区城市群中空气质量指数出现了2个高值和2个低值中心,高值中心分别位于成都市、德阳市,2个低值中心分别位于雅安市、遂宁市,即成都市和德阳市空气质量最差,雅安市和遂宁市的空气质量最优;对于不同季节,1—12月,成都平原经济区的空气质量综合指数呈U字型变化,即空气质量6—10月较好,11月—次年2月较差.2) 2016—2020年,成都市PM2.5质量浓度值皆超过了国家二级标准限值,并且以PM2.5为首要污染物出现频率最高,而O3、CO、SO2年均质量浓度在研究时段内均低于国家二级标准质量浓度限值.3) 2016—2020年,成都市PM2.5质量浓度与能见度呈显著负相关;年尺度上,成都市PM2.5质量浓度与平均气温呈低度负相关,...  相似文献   

6.
为了提升城市空气质量的预报准确率,分析大气PM2.5污染物各尺度污染变化情况,提出基于GIS技术与嵌套网格的大气PM2.5污染最优集成预报方法.基于大气污染扩散模拟情况,利用GIS技术的前、后期数据处理以及结果显示输出,处理大气PM2.5污染数据,可视化展示污染扩散情况;采用嵌套网格空气质量预报模式系统(NAQPMS),模拟大气PM2.5污染物各尺度污染变化,完成污染预报;基于观测、预报资料结合多种集成方法组建集成预报,经评价获取评分最高集成预报方法,完成大气PM2.5污染最优集成预报.以安阳市为例,应用该方法进行空气质量预报实验.结果表明:该方法的PM2.5质量浓度预报值与实际观测值更加接近,有效提升了大气污染预报准确率,以PM2.5为代表的细颗粒物和以扬尘为主要源的粗颗粒物污染突出,需加强企业烟尘污染物的管控.  相似文献   

7.
【目的】分季节预测PM2.5浓度值,利用PCA方法对数据进行降维,分析季节及气象因素对PM2.5的影响,在提高预测准确率的同时降低时间复杂度。【方法】以合肥市2014—2017年的PM10、SO2、CO2、CO、O3浓度值,以及同时段的气象因素值,对PM2.5浓度进行预测。数据分析中发现PM2.5在不同季节浓度差异较大,故本研究选择分季节进行预测;为了提高预测准确率,加入如风力、温度、湿度、气压等气象因素进行预测,同时采用主成分分析(PCA)的方法进行数据降维,将降维后的数据再输入BP神经网络模型进行预测。【结果】实验采用3组实验进行对比:5种污染物指标(PM2.5-5)预测PM2.5、加入气象因素的综合12项指标(PM2.5-12)预测PM2.5、对综合指标进行PCA处理后的(PM2.5-PCA)预测PM2.5。实验结果表明:4个季节的PM2.5浓度值有较大变化,均方根误差(RMSE)的差值较大;采用PM2.5-PCA的方法,在任何季节的RMSE均有降低,相关系数(r)均有所提高。【结论】PM2.5浓度具有季节性特征,采用季节性预测方法可以提高预测准确率;同时采用PCA方法进行降维,可以在保证准确率的同时降低预测时间复杂度。  相似文献   

8.
黄刚 《长沙大学学报》2023,(2):60-65+87
探寻长沙某区域内的大气污染成因,为该区域大气污染预警与控制提供理论依据。以该区域内大气中PM2.5、PM10、O3、NO2、SO2、CO、有机污染物等污染因子为研究对象,以各污染因子浓度与组成在2021年3月至2022年2月的监测数据为依据,通过污染因子与影响因素之间的关联性分析,确定该区域内各污染因子的形成原因。结果显示:该区域内PM2.5年均浓度为40μg/m3、PM10年均浓度为43μg/m3,大气颗粒污染物主要由工地扬尘、非道路移动机械、机动车尾气以及燃烧源共同引起;大气有机物污染主要是由机动车尾气排放、有机溶剂挥发以及化石燃料燃烧产生。通过对臭氧生成潜势进行分析发现,芳香烃类物质贡献最大,占比60.8%,其次为烯烃类物质,占比为22.9%,这表明该区域臭氧浓度受溶剂涂料使用工序影响较大。  相似文献   

9.
 为研究交通限行对城市次干道路域环境空气质量的影响,于2015年8月20日至9月30日对北京市典型次干道PM2.5、NO2、O3、CH4和非甲烷总烃等污染物进行连续监测,并同步观测车流量,研究阅兵期间交通限行措施对北京城市次干道车流量和空气质量的影响。结果表明,交通限行措施对小客车、中型客车和重型货车的车流量控制明显,分别降低了35.36%、45.12%和94.23%,而出租车和公交车的车流量有增高现象;交通限行期间及限行结束后次干道污染物浓度变化显著,交通限行结束后NO2、非甲烷总烃浓度分别增加了127%和33.3%,O3浓度下降了27.7%;次干道车流量与CH4小时浓度呈显著负相关,与PM2.5小时浓度、日均浓度有相关性;机动车贡献的NO2、O3浓度净值与车流量显著相关,交通限行对机动车贡献的NO2浓度净值的平均削减幅度为51.25%,O3增加幅度为82.99%;受交通限行和区域减排影响,PM2.5削减幅度达34.72%。  相似文献   

10.
 采用2014-2018年中国225个地级市的面板数据,以各地市当年PM2.5、PM10、NO2、SO2、CO、O3的年均浓度作为被解释变量,通过多期双重差分的方法检验了中央环保督察制度在改善地方大气质量方面的政策效果及其持续性。研究发现:中央环保督察对PM10、SO2和CO的浓度改善具有显著作用;在政策效果持续性上,相比PM10,中央环保督察对地方SO2、CO浓度的改善更具有持续性。建议进一步常态化中央环保督察制度以持续推动地方大气环境质量改善,关注移动源、建设工程扬尘与二次污染物防治以推动多类大气污染物的减排,实现空气质量的综合提升。  相似文献   

11.
利用江西省6项主要大气污染物的逐时监测资料,通过反距离权重插值法和相关分析方法,探讨了2020年春季江西省空气质量的时空变化特征及其影响因素。研究结果表明:江西省11个地级市2020年春季空气质量较2019年同期均明显改善,其中大气污染物浓度普遍呈现出前期南高北低,随着时间的推移浓度高值区向北部转移的趋势;空气质量与地区生产总值和第二产业占GDP比重等社会经济因素显著相关,其中地区生产总值与O3相关系数为0.700,第二产业占GDP比重与NO2相关系数为0.691;空气质量还与平均气温、平均风速以及平均相对湿度等气象因素相关,其中平均气温与CO、PM2.5、PM10的相关系数分别为0.591、-0.506和-0.543,平均风速与O3相关系数为0.540,平均相对湿度与SO2相关系数为0.503。2020年春季江西省空气质量的改善不仅与停工停产等减排措施有关,还受气温、风速以及相对湿度等气象条件的影响。  相似文献   

12.
基于2014-2016年的北京地区PM2.5监测数据, 用空间插值法获得北京地区的PM2.5空间分布, 并基于DMSP/OLS夜间灯光数据, 模拟得到北京地区的人口密度空间分布。在此基础上, 从PM2.5浓度空间分布、PM2.5污染的人口暴露特征、PM2.5污染人口暴露强度以及人口加权PM2.5浓度4个方面评估北京地区PM2.5污染暴露风险。结果显示: 1)PM2.5浓度呈现南高北低的空间分布特征, 人口暴露风险空间分布与人口密度空间分布呈现高度的一致性, 即人口密度高的区域,PM2.5污染人口暴露风险也相对较高; 2) 2014, 2015, 2016年北京地区GB3095-2012二级年均浓度标准35 μg/m3的超标人口比例均为100%, 24小时平均浓度标准75 μg/m3的超标人口比例呈逐年显著下降趋势; 3) 2014-2016年北京市人口加权PM2.5年均浓度值与PM2.5年均值均存在差异, 差异度与城市暴露人口和污染情况密切相关; 4) 由于PM2.5污染物浓度空间分布特征与人口密度空间分布特征不同, 北京市PM2.5污染对总体人群的实际影响和健康危害与其平均浓度水平并不相同, 因此考虑人口密度空间分布特征的暴露风险评估比只考虑PM2.5污染物浓度的暴露风险评估更准确。  相似文献   

13.
【目的】比较分析XGBoost模型、LightGBM模型、随机森林模型(RF)、K最近邻模型(KNN)、长短期记忆神经网络(LSTM)、决策树模型(DT)共6个PM2.5浓度预测模型,以准确、及时预测环境PM2.5浓度。【方法】基于重庆市合川区2020年全年空气质量监测数据和气象数据,通过最大相关最小冗余算法(MRMR)进行数据降维选择最优特征子集,作为模型的输入,逐一进行PM2.5浓度预测;考虑到不同季节PM2.5浓度差异较大,故分季节预测了PM2.5浓度;为了探究各模型预测性能,计算了各模型运行时间和内存占用,并基于PM2.5与特征变量的相关性和特征变量的重要性探讨了模型预测性能季节性差异原因。【结果】模型总体预测精度从高到低排序为 XGBoost、RF、LightGBM、LSTM、KNN、DT模型;预测性能方面,6个模型均表现为秋冬季节预测精度高于春夏季节;LightGBM模型可在保证模型精度的情况下,大幅减少模型训练时间和内存占用;特征重要性显示PM10浓度、气温和气压的重要性高,O3浓度、风向和NO2浓度重要性相对较弱。【结论】采取MRMR方法进行数据降维选取的最优特征子集能较好地预测PM2.5浓度;相比较而言,XGBoost、RF、LightGBM、LSTM模型在PM2.5浓度预测上具有较优性能,其中综合性能较好的为LightGBM模型。  相似文献   

14.
利用2016—2018年冬季济南市大气主要污染物和气象监测数据,对大气污染特征及潜在源区进行分析。结果表明:2016—2018年冬季济南市环境空气中可吸入颗粒物PM10和细颗粒物PM2.5分别占首要污染物的34.7%和63.8%,轻度污染以上天数占总天数的58.6%,冬季高质量浓度PM2.5导致年均值增加7.5μg/m3;从空间分布来看,PM10与PM2.5空间分布为天桥区、槐荫区及平阴县质量浓度较高,SO2则为商河县和济阳区质量浓度偏高,NO2和CO为济阳区、天桥区和槐荫区质量浓度较高;研究期间NO2、CO、PM10、PM2.5的质量浓度呈正相关性,相关系数均在0.7以上,推断交通源、工业燃烧源、燃煤是颗粒物的主要来源;济南市冬季的气团输送为偏南、西北、偏北和偏东4个方向,偏南和偏东气团为影响济南市冬季大气污染主要输送路径。进一步研究潜在源区贡献...  相似文献   

15.
为研究长春市冬季和春季大气PM2.5的主要来源及污染特征, 于2018-01-06—2018-05-14连续采集PM2.5环境受体样品, 分析其无机元素及水溶性阴离子组分. 结果表明: 采样期间长春市PM2.5的质量浓度为(46.4±24.4)μg/m3, 冬季和春季的平均质量浓度分别为(51.0±25.8)μg/m3和(32.6±11.5)μg/m3, 超标率为11%, 均在冬季超标, 在春节假期中(2018-02-15—2018-02-21), PM2.5的质量浓度低且保持平稳; 所测全部水溶性阴离子及部分无机元素(Al,As,Pb,Se,Ti)质量浓度呈冬季高于春季的趋势; 长春市无机元素主要源于燃煤、 交通和扬尘; 长春市PM2.5中NO-3和SO2-4是燃煤和机动车尾气共同作用的结果, 其中燃煤源的贡献率相对较高; 长春市冬春季PM2.5主要来源为二次源(28.2%)、土壤尘源(12.6%)、交通排放源(10.7%)、燃煤源和建筑尘源(28.6%)、工业源和其他源(19.8%).  相似文献   

16.
 针对电除尘细颗粒物(PM2.5)排放控制,提出利用电除尘指数指导电除尘本体和电源设计选型技术的原理和方法,并介绍电除尘改造的应用案例.通过优化电除尘指数、采用三相高压电源开展电除尘改造和选型.通过电除尘和脱硫塔除雾器的同步改造,可以实现烟囱出口颗粒物排放浓度低于5 mg/m3,同时,PM2.5 (直径2.5 μm 以下的颗粒物)排放浓度低于2.5 mg/m3.示范工程还表明当电除尘器出口PM10(直径10 μm 以下的颗粒物)排放在6~30 mg/m3时,PM2.5占PM10比例为6%至20%;当PM10排放在5~15 mg/m3时,PM2.5排放可低于2.5 mg/m3.  相似文献   

17.
为探究川东平行岭谷大气颗粒物质量浓度垂直变化特征,通过对四川盆地偏东部的重庆市荣昌区典型雾霾期气象条件下大气颗粒物质量浓度(PM1,PM2.5和PM10)的垂直连续监测,分析温度、风速、相对湿度等气象条件与大气颗粒物浓度垂直分布的关系。结果表明:PM1,PM2.5,PM10的日变化在各高度范围内均表现为夜间浓度较高。3种粒径段颗粒物的质量浓度均随高度升高而下降,0~300 m内颗粒物质量浓度最高,PM1,PM2.5,PM10分别为39.61,193.62,338.87μg/m3。不同空气质量状况下,颗粒物浓度纵向分布不同。空气质量为良时,颗粒物随高度升高缓慢下降,600 m处PM1,PM2.5和PM10浓度为100 m处的70.49%,69.60%,65.94%;轻度污染期间,600 m高度的颗粒物浓度比...  相似文献   

18.
 以西安市冬季某研究生高层公寓为监测对象, 通过1 min 时间间隔同步监测, 研究了不同楼层室内外空气中颗粒物PM1、PM2.5、PM10以及总悬浮颗粒物TSP 的质量浓度、分布状况与变化特征。结果表明, 西安市冬季高层公寓存在严重的颗粒物污染, 室内粗颗粒物PM10质量浓度为(65.5±20.0)~(142.0±16.9)μg/m3, 略低于室内空气质量标准, 但室内细颗粒物PM2.5及超细颗粒物PM1分别为(52.2±14.3)~(111.5±12.2)μg/m3和(50.6±13.9)~(108.7±11.9)μg/m3, 其中PM2.5质量浓度占总悬浮颗粒物TSP 的50%以上;室外以粗颗粒物PM10为主, 楼层高度与颗粒物质量浓度之间无显著关联。  相似文献   

19.
近年来我国灰霾天气频发,环境空气质量引起了人们的广泛关注.本研究在湖北省5个代表城市2018年3月至2019年2月空气质量基础上,采用线性拟合分析法对该地区空气质量时空变化规律和温度对首要污染物PM2.5的影响进行研究.年度结果表明,五市空气质量最差时段均出现在1月,且7月空气质量最优,其原因是冬季北方城市供暖,以及民众燃放烟花爆竹导致空气质量下降.五市空气质量空间分布结果表明,全年空气质量以咸宁市最优,襄阳市最差.冬季湖北省东部(武汉、黄冈和咸宁市)空气质量明显优于西部(襄阳和宜昌市);进一步对湖北省东部的武汉和西部的襄阳的首要污染物加以比较发现,两城市首要污染物均为PM2.5和O3,其中武汉市NO2日均值达标率低于襄阳市,其来源一部分是当地工业生产和汽车尾气排放,另一部分则是由于气候风向和地形因素导致北方城市的空气污染物扩散而来.  相似文献   

20.
沿海城市的PM2.5和臭氧除受排放源、天气条件影响以外,还往往同时受城市热岛环流和海陆风环流的双重影响.利用2015年杭州市气象和环境监测数据以及数值模式RBLM-Chem,分析研究了杭州市在陆风天气、海风天气和海陆风三种环流条件下污染物浓度特征及城市效应对其的影响.得到了以下主要结论:海风使杭州市污染物浓度增大,在观测数据中PM2.5浓度和臭氧浓度分别最大增高了10.9μg·m-3和12.0μg·m-3,在模拟结果中相比于陆风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别增大13.1μg·m-3和18.9μg·m-3;相比于海风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别减小24.1μg·m-3和11.6μg·m-3.城市效应导致杭州市边界层高度增加63.8 m,地面风速减小0.99 m·s-1,地面气温增高1.14℃,PM2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号