首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

2.
设X是一个有限全序集,E是集合X上的等价关系.令PEOPx={α∈Px:(A)x,y∈domα,(x,y)∈E且x≤y(=>)(xα,yα)∈E且xα≤yα},取定θ∈PEOPx,在PEOPx上定义一个运算"o",其中α°β=αθβ,得到一个新的半群称为保E-序部分变换半群的变种半群,记为PEOPx(θ).本文主要刻划...  相似文献   

3.
设X为非空集合,|X|>3,TX是X上的全变换半群.设E是X上的一个等价关系,TE(X)是由等价关系E所决定的TX的子半群,满足(x,y)∈E,(f(x),f(y))∈E.记T2(X)是TE(X)的一个子半群,满足f∈T2(X),|f(X)|≤2.讨论了半群T2(X)上的格林关系和正则元.  相似文献   

4.
设TX是非空集合X上全变换半群,E是X上非平凡的等价关系,R是X/E的横断面,则TE(X,R)={f∈TX:x,y∈X,(x,y)∈E(f(x),f(y))∈E且f(R)R}是TX的子半群.本文赋予半群TE(X,R)自然偏序关系,通过构造映射的方法,刻画它的左相容元,给出充要条件.  相似文献   

5.
设X为任意非空集,E是X上的等价关系,PX表示集合X上的部分变换半群.IX={α∈PX:(x,y)∈domα,xα=yαx=y},且IX做成PX的一个子半群,称为对称逆半群.定义IE(X)={α∈IX:x,y∈domα,(x,y)∈E(xα,yα)∈E}.显然IE(X)关于部分变换的乘积(作为半群运算)生成一个半群,称为保持等价关系E的部分一一变换半群,它是IX的一个子半群.本文对IE(X)上的Green关系给出了完整的刻画.  相似文献   

6.
一个变换半群的同余(英文)   总被引:1,自引:1,他引:0  
设X是一个集合,|X|>3,TX为集合X上的全变换半群.设E为X上的一个等价关系,TE(X)={f∈TX:(x,y)∈E■(f(x),f(y))∈E}为由等价关系E决定的TX的一个子半群.记T2(X)={f∈TE(X):|f(X)|≤2}∪{id},这里id表示X上的恒等映射,则T2(X)是TE(X)的一个子半群.另外还描述了半群T2(X)上的几个同余.  相似文献   

7.
设X为有限集合,E为X上的等价关系且IX是X上的对称逆半群。令IE*(X)={f∈IX:对任意的x,y∈dom(f),(x,y)∈E当且仅当(f(x),f(y))∈E},则IE*(X)是IX的逆子半群。设X为全序集,E为X上的凸等价关系。令OPIE*(X)为IE*(X)中所有方向保序部分一一变换作成的半群。这是一类全新的半群,有一定的难度和复杂性,通过对它的研究可以探求新的变换半群的结构与性质。本文讨论它的Green关系。  相似文献   

8.
设X为非空集合,PX为X上的部分变换半群,设E为X上的一个等价关系,R为商集X/E的横断面(即在每个等价类中取一个元素所组成的集合).对于每个x∈dom f,记rx为R中的元素,满足(x,rx)∈E.定义PE(X,R)={f∈PX:(∨)x,y∈dom f,(x,y)∈E(→)(f(x),f(y))∈E,(∨)x∈dom f(→)rx∈dom f,f(rx)∈R}.则PE(X,R)作成PX的子半群.本文主要讨论PE(X,R)的Green关系.  相似文献   

9.
一类保等价关系部分变换半群的Green关系和正则性   总被引:1,自引:0,他引:1  
设X为任意集合且X≥3,PX为集合X上的部分变换半群,对于X上的非平凡等价关系E,令PE(X)={f∈PX:(a,b)∈E,(f(a),f(b))∈E},那么PE(X)是PX的一个子半群.从较特殊的情况出发,考虑E为X上的单等价关系,即E=(A×A)∪Δ(X)其中A是X的真子集且A>1,Δ(X)=(x,x):x∈X.给出了PE(X)的正则元的充分必要条件及PE(X)的正则性,刻划了PE(X)的Green关系及PE(X)的正则元之间的Green关系.  相似文献   

10.
设(X,≤)是全序集,T(X)是X上的全变换半群,E为X上的任意的非平凡等价关系,设E*O(X)={α∈T(X):x,y∈X,(x,y)∈E,x≤y(xα,yα)∈E,xα≤yα}则E*O(X)是T(X)的子半群;当X是有限和E是凸时,研究了E*O(X)的Green关系,并证明了它是正则子半群.  相似文献   

11.
有限夹心半群T(X,Y;θ)的正则性与Green关系   总被引:1,自引:1,他引:1  
设X,Y是非空集合。记T(X,Y)为X到Y的映射全体构成的集合,θ是Y到X的一个确定的映射,α,β∈T(X,Y),定义运算:αβ=αθβ,这里,αθβ表示一般映射的合成。则T(X,Y)关于运算构成一个半群,称为夹心半群T(X,Y;θ)。当X,Y都为有限集合且|X|>1,|Y|>1时,称夹心半群T(X,Y;θ)为有限夹心半群。讨论了T(X,Y;θ)、T(X;θ)和TX之间的联系,研究了有限夹心半群T(X,Y;θ)的正则性和G reen关系。  相似文献   

12.
设X为一非空集合,T(X)为X上的变换半群,E为X上的一个等价关系,给出如下两个集合:Tx0(X)={α∈T(X):x0α=x0},Tx0SE(X)={α∈Tx0(X):x∈X,(x,xα)∈E}。证明了Tx0SE(X)为一正则半群,同时还讨论了Tx0SE(X)上的自然偏序结构及其左右相容性。  相似文献   

13.
设X,Y是任意的非空全序集合,OT X,Y是X到Y的全体保序映射构成的集合,θ是Y到X的一个确定的保序映射.对任意α,β∈OT X,Y,定义:αβ=αθβ,这里αθβ表示一般映射的合成.则OT(X,Y)关于运算°构成一个半群,称为保序的夹心半群,记为OT(X,Y;θ).当X,Y都是有限集合且|X|>1,|Y|>1时称保序夹心半群OT(X,Y;θ)为有限保序夹心半群.本文讨论有限的保序夹心半群的格林关系.  相似文献   

14.
设Jn为有限集X={1,2,…,n}上的全变换半群,Sn为Jn中所有奇异变换构成的子半群,记Sn-={f∈Sn:x∈X,f(x)≤x},Qn={f∈Jn:x,y∈X,x≤y f(x)≤f(y)},那么Sn-与Qn都是Tn的子半群,令Hn=S-n∩Qn,则Hn也是Jn的一个子半群,Hn的某些性质,诸如Green关系,Green星关系,秩和幂等秩都进行了研究,还证明了Hn是幂等元生成的,且可由J*中的n-1个幂等元生成.  相似文献   

15.
设X和Y是有限非空集合,PO(X,Y)表示从X到Y的所有部分保序映射构成的集合.取定θ∈PO(Y,X),在PO(X,Y)上定义运算,如:αβ=αθβ,则(PO(X,Y),)是一个半群,称为有限部分保序夹心半群,记为PO(X,Y,θ).半群PO(X,Y,θ)的格林关系及其正则元被刻划了.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号