首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
 综述了近年来高性能聚丙烯腈(PAN)基碳纤维的研究进展,对PAN聚合、原丝制备、预氧化和碳化过程中最为关键的问题进行了总结:(1)聚合工艺对共聚单体在PAN分子链上的分布和溶液的均匀性非常重要。与间歇聚合或半连续聚合工艺相比,连续溶液聚合工艺可以提供更稳定的纺丝溶液,减少聚合过程中微凝胶的产生,并提高PAN原丝乃至碳纤维的均匀性。(2)PAN溶液进行湿法或干湿法纺丝过程中,相分离过程控制对PAN原丝及其碳纤维中微缺陷形成和发展,微缺陷的含量至关重要,并最终影响碳纤维的性能。干燥和牵伸工艺对于优化PAN碳纤维原丝的结晶和取向结构,制备高品质的碳纤维原丝同样起决定作用。(3)预氧化的升温速度、最高预氧化温度和预氧化张力控制对预氧丝的皮芯结构、环化指数及其对后续碳化工序的顺利进行产生重要的影响并影响碳纤维的性能;碳化的最高温度影响PAN基碳纤维的强度和模量。(4)碳纤维的结构与其性能具有直接相关性,中国对相关研究仍然比较缺乏,碳纤维生产技术水平和自主创新能力仍然不足。  相似文献   

2.
中间相沥青在碳化过程中轻组分不断逸出而发生剧烈膨胀,对以其为黏结剂或基体的碳纤维增强复合材料的界面结合性能有显著影响.利用TG、XRD和SEM等考察了预氧化条件对碳纤维的热稳定性、碳收率、晶体结构和纤维在乙醇水溶液中分散性的影响规律.从多个预氧化条件中甄选出以270℃保温150 min处理的氧化纤维进行碳化条件影响规律的考察.利用光学显微镜观察发现700~900℃碳化的碳纤维直径变化最显著.利用FTIR和SEM考察不同碳化温度碳纤维与中间相沥青黏结剂制备的碳黏碳纤维网络体的界面相容性.结果表明,500℃碳化的碳纤维与碳质黏结剂的结合紧密,结点平滑无裂纹,具有优异的界面相容性.500℃碳化的碳纤维与中间相沥青黏结剂在后续碳化处理中共同经历碳结构的主要形成阶段,可改善黏结界面,为提高材料性能提供有效途径.  相似文献   

3.
本文通过对PAN预氧化纤维在碳化过程中的热裂解反应机理的分析,采用了以600℃为分界点的两段碳化工艺。对有关分段碳化的温度、碳化时间、张力及保护气氛等对最终碳纤维的力学性能的影响,作了较详细的研究。  相似文献   

4.
利用TG,Raman,EA,XRD,NMR等分析手段,研究了预氧纤维在碳化过程中的结构转变。研究结果表明:碳纤维体密度随预氧纤维体密度的升高呈下降趋势;预氧纤维中的含氧量会影响碳纤维的致密结构,氧元素的脱除影响碳纤维非晶区结构的交缠程度进而影响碳纤维体密度,碳纤维体密度随预氧纤维的含氧量增加而降低。通过碳纤维致密结构与预氧纤维结构的相关性分析,初步建立了两者之间的关联关系。  相似文献   

5.
以聚丙烯腈预氧化纤维为先驱纤维,使其在真空烧结过程中原位转化生成碳纤维来增韧氧化铝陶瓷材料.利用热重–差热分析和X射线衍射研究了聚丙烯腈预氧化纤维的相结构和化学结构以确定制备复合材料的升温烧结工艺,并探讨了加压方式和聚丙烯腈预氧化纤维含量对复合材料组织结构和性能的影响.研究发现聚丙烯腈预氧化纤维在差热曲线上444℃左右的放热峰和X射线衍射图谱中17左右的衍射峰是由预氧化阶段残留的未充分氧化的聚丙烯腈分子引起的;而1073℃左右的吸热峰和25.5左右的衍射峰说明预氧化纤维在加热烧结过程中已开始向碳纤维转变.热压烧结制备的复合材料的力学性能明显优于无压烧结.随着聚丙烯腈预氧化纤维含量的增加,复合材料的密度和显微硬度降低,而断裂韧性则先升高后降低,当聚丙烯腈预氧化纤维体积分数为20%时,复合材料的断裂韧性最大,达9.39MPa.m1/2,说明原位碳纤维的生成提高了复合材料的断裂韧性,其增韧机制主要为纤维拔出和脱黏.  相似文献   

6.
通过静电纺丝制备了平均直径为350nm的聚丙烯腈(PAN)纳米纤维.将PAN纳米纤维分别在250,265和280℃温度下预氧化1h后,将它们在1 000℃下碳化得到碳纳米纤维.通过扫描电镜、红外光谱、差示扫描量热分析和X射线粉末衍射分析对PAN纳米纤维、预氧化后的纳米纤维及碳纳米纤维的形貌、热性能和化学结构进行了表征.结果表明,PAN纤维的最佳预氧化温度为280℃.在该温度预氧化后所得碳纤维的导电性最好,电导率为(13±0.58)S/cm.  相似文献   

7.
在对碳纤维进行除浆和预氧化的基础上,将其与中间相沥青甲苯溶液混合,通过抽滤法制备碳纤维薄膜骨架,二次抽滤氧化石墨烯填充到碳骨架之间,经热处理后制得具有三维网络结构的自支撑G-CF-MP复合薄膜.探索和分析了不同碳化和石墨化温度对薄膜材料形貌、导电性以及导热性能的影响.通过结构表征发现,碳纤维之间相互搭建构成高机械性能的碳骨架,碳纤维表面以及纤维之间的空隙被石墨烯均匀地包覆和填充,中间相沥青在达到软化点后呈现出流动性和黏性,充分润湿碳纤维与石墨烯之间的间隙,3种碳材料协同作用,从而获得了高机械强度以及高导电性的G-CF-MP复合薄膜材料.导电性测试发现,石墨化处理可以有效提高材料的导电性,G-CF-MP复合薄膜在经过900℃碳化后的方阻为2.853Ω/sq,经过石墨化处理后的方阻降低为0.229Ω/sq.经过导热性能测试,G-CF-MP(900℃)的热导率为475.2 W/(m·K),G-CF-MP(2 300℃)的热导率为532.8 W/(m·K).  相似文献   

8.
侯志凌 《太原科技》2014,(3):109-110
预氧化在碳纤维生产过程中起到一个重要的过渡作用,适当的预氧化工艺是制备性能优异碳纤维的基本保障。笔者通过在空气气氛下对PAN基碳纤维进行不同温度热处理,通过调整工艺参数,研究PAN基碳纤维在预氧化过程中分子链内的环状结构形成机制。结果表明:聚丙烯腈原丝在预氧化过程中,自身的官能团发生了脱氢和环化反应,并形成了含有C=N,C-C的梯形结构。热氧化过程中温度低于250℃时,纤维表面含氧量不断增加,主要增加的官能团为羟基、醚键以及羰基。  相似文献   

9.
PAN基高性能碳纤维的制备及其性能的研究   总被引:2,自引:0,他引:2  
碳纤维(简称CF)是一种新型高强度材料。本研究工作采取连续预氧化碳化方式,探索CF制备过程中工艺-结构-性能之间的关系。利用光学显微镜,密度,x-射线衍射,元素分析等技术和测试手段重点研究工艺参数对CF结构性能的影响。实验结果表明,CF的结构性能与工艺条件有着密切关系,通过控制CF有关的制备工艺参数,可以制得高性能碳纤维。  相似文献   

10.
碳纤维的优良性能 碳纤维是一种碳含量超过90%的纤维状炭材料,是以有机纤维——聚丙烯晴(PAN)纤维、粘胶纤维、沥青纤维等原丝经过预氧化、碳化、石墨化等高温固相反应工艺过程制备而成,由有择优取向的石墨微晶构成,因而具有很高的强度和弹性模量(刚性)。它的比重一般为1.70 g/cm3~1.80g/cm3,强度为1200 MPa~7000MPa,弹性模量为200 GPa~400GPa,热膨胀系数接近于零,甚至可为负值(~1.5×10-6)。 碳纤维同时具有高比强度 、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能。这些优良的…  相似文献   

11.
以各向同性煤沥青为原料,采用熔融纺丝工艺制备了直径为55μm的沥青纤维,经预氧化、炭化和石墨化处理后得到炭纤维和石墨纤维,并采用偏光显微镜、XRD和SEM等对其形貌、结构和性能进行表征。结果表明,炭/石墨纤维具有与沥青原料相似的各向同性光学结构;随热处理温度升高,炭/石墨纤维截面逐渐变粗糙,且内部石墨微晶逐步发育并长大,3 000℃下石墨化纤维微晶增大较明显,其堆积高度和平面尺寸分别约为5nm和11nm;1 600℃炭化纤维的力学性能较好,其拉伸强度和杨氏模量分别达到0.57GPa和32.19GPa,进一步提高热处理温度,纤维拉伸强度逐步降低,但是其杨氏模量逐渐增加,3 000℃石墨化纤维的拉伸强度和杨氏模量分别为0.26GPa和40.57GPa;炭/石墨纤维室温轴向电阻率随热处理温度的升高而降低,1 000℃炭化纤维室温轴向电阻率为47.78μΩ.m,3 000℃石墨化纤维室温轴向电阻率降至21.98μΩ.m。  相似文献   

12.
对中间相沥青基炭纤维在炭化过程中结构与性能的变化规律进行了研究。结果表明,随着炭化温度的升高,炭纤维的拉伸强度和模量均呈上升趋势,炭纤维的d002呈现下降趋势,而La和Lc呈现上升趋势。对炭纤维的电磁参数测试结果表明,炭化温度对炭纤维的介电常数有明显的影响,但对磁导率影响不大,不同炭化温度的中间相沥青基炭纤维的复介电常数实部随电磁场频率的降低而升高,其介电损耗也随着炭化温度的升高而呈现上升趋势。  相似文献   

13.
采用广角X射线衍射(WAXD)、气相色谱(GC)、元素分析(EA)、扫描电子显微镜(SEM)等表征手段定量分析了炭化气流诱导效应对聚丙烯腈(PAN)基碳纤维聚集态结构及力学性能的影响。结果表明,PAN基碳纤维密度与炭化气流具有显著关联性,逆向气流可有效提高纤维密度,改善致密性;PAN基碳纤维的晶区含量同时取决于晶粒的大小和数量,逆向炭化气流有利于小晶粒的形成和晶区含量的提高,并对孔隙的形成具有抑制作用。保持炭化逆向气流比为3时,所得PAN基碳纤维的微晶尺寸(1.52nm)较小,晶区含量(35.2%)最高,孔隙率(16.2%)较低,此时拉伸强度(4.03GPa)最高,比正向气流条件下制备的PAN基碳纤维的拉伸强度提升了35.7%。  相似文献   

14.
在一定反应温度范围内以熔盐为介质通过炭纤维与金属锆反应制备出碳化锆/锆涂层炭纤维,并在反应温度为800℃时,研究反应时间对碳化锆/锆涂层炭纤维表面相组成、形貌及其拉伸性能的影响。结果表明,800℃可制备均匀致密的碳化锆/锆涂层;且随着反应时间的延长,碳化锆/锆涂层厚度略有增加;涂层后炭纤维的拉伸强度和拉伸模量比原炭纤维的相应值略有减小。  相似文献   

15.
以分别经α-氨丙基三乙氧基硅烷(KH550)、浓硝酸、浓硝酸-KH550处理的短切碳纤维作为功能组分,制备室温硫化硅橡胶复合材料,研究了碳纤维处理方法对复合材料的力学性能、热性能和烧蚀性能的影响。结果表明,添加经浓硝酸-KH550连续处理碳纤维时,复合材料的性能最好;性能最佳复合材料的拉伸强度和撕裂强度分别为4.0 MPa和20.3 kN/m,起始分解温度提高到509.3 ℃,而线烧蚀率和质量烧蚀率分别降低至0.148 mm/s和0.062 g/s。  相似文献   

16.
热压铁焦是一种新型含碳复合炉料,高炉使用铁焦有助于降低热空区温度、减少CO_2排放.研究了工艺参数对热压铁焦抗压强度的影响,并分析其作用机理.研究结果表明,在一定范围内,铁焦抗压强度随着铁矿粉配比增加先增加后降低,在矿粉配比15%时取得较大值3 490.89 N;随着烟煤配比的增加而提高;随着热压温度的提高而提高,在热压温度350℃时取得较大值4 305.50 N;随着炭化温度的提高先降低后提高;随着炭化时间的增加先提高后降低,在炭化时间4 h时取得较大值3 518.80 N.从抗压强度角度考虑,热压铁焦合适的制备工艺参数为10%~15%铁矿粉,60%~70%烟煤,热压温度300~350℃,炭化温度1 000~1 100℃,炭化时间2~4 h.  相似文献   

17.
以Courtaulds纤维为原料,采用连续化碳纤维生产线制备出稳定的预氧纤维,通过连续化活化炉进行预碳化和水蒸气物理一步活化,制备出具有高吸附性能和高拉伸强度的聚丙烯腈基活性碳纤维(PAN-ACFs)丝束。借助比表面积(BET)、广角X射线衍射(WAXD)、力学性能和碘吸附等表征测试手段研究了水蒸气量对PAN-ACFs孔结构及力学性能的影响。结果表明:在适当的活化时间、活化温度下,逐步增加水蒸气的流量,活性碳纤维的吸附能力先快速增大,而后稳定,最后再缓慢地增加;纤维的拉伸强度呈现出先增大后减小的变化趋势;当水蒸气流量为1g/min,起始的温度为650℃,高温区为850℃,活化时间为20min时,所制备的PAN-ACFs具有相对较高的吸附性能、力学性能和碳化收率。  相似文献   

18.
磷酸盐活化法制备椰壳纤维基活性炭研究   总被引:3,自引:0,他引:3  
采用正交试验设计实验方案,以椰纤维为原料,经炭化、活化等处理,研究磷酸盐活化制备高比表面积活性炭的实验方案与工艺条件,得到比表面积高,孔隙发达,吸附效果优异的活性炭.考查了活化剂配比、活化温度、活化时间、升温速率等因素对活性炭吸附性能及产率的影响,得到最佳的活化方案与工艺条件.并在实验的基础上探讨了活性炭的活化机理.  相似文献   

19.
To investigate the influence of various processing parameters on the mechanical properties of fibers, lignin/graphene oxide(GO)/poly(vinyl alcohol)(PVA) fibers with different mass ratios of lignin and GO to PVA were prepared by gel spinning technique. Air drawing process and spinneret diameters were tuned as the main factors. The tensile strength increased up to 472 MPa with air drawing process applied in 30 L0.05 GO0.72 D-A PVA fibers(air-drawn PVA fibers reinforced by 30% lignin and 0.05% GO spun with a spinneret diameter of 0.72 mm), indicating 17.4% higher than that of the fiber without air drawing process(402 MPa). Similarly, at least a 14.6% increase in Young's modulus has been achieved for 30 L0.05 GO0.72 D-A fiber. In addition, a smaller spinneret diameter(0.72 mm) also led to a 24.9% increase in tensile strength and a 7.7% increase in Young's modulus in comparison with those of 5 L0.05 GO0.84 D-A fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号