首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
盾构始发端土体加固范围影响参数分析   总被引:1,自引:1,他引:0  
在盾构施工过程中,盾构隧道始发段是事故多发阶段。以武汉市轨道交通二号线江-积区间盾构始发段施工为工程背景,根据三种不同的强度与稳定性理论,计算工程中的端头加固范围;并确定对加固范围影响较大的参数为:隧道直径、隧道埋深、土体的抗拉强度与抗剪强度。利用FLAC~(3D)软件建立盾构始发段施工的数值模型,模拟不同加固长度下土体应力分布。发现随着土体加固范围的增加,始发井周围土体受到扰动而产生的位移、应力等呈现明显的规律性变化。结论为盾构施工的端头加固范围的确定提供了借鉴作用。  相似文献   

2.
地铁隧道盾构施工始发与到达段容易出现塌方、涌水(泥、砂)等工程事故,因此该区域地层的加固优化设计尤为关键.文中结合长株潭城际铁路树木岭盾构隧道始发段地层加固工程实际,首先采用弹性薄板理论计算不同安全系数下端头土体的纵向加固范围,并利用强度理论和滑移失稳理论对土体进行强度及稳定性验算;然后基于Terzaghi围岩压力理论确定浅埋盾构端头土体的横向加固范围,利用FLAC3D建模分析不同加固范围盾构施工对周边环境的影响,依据相关监测规程及设计文件要求,从经济性和稳定性角度确定优化后的端头土体加固范围,并应用到该工程中.优化后的数值模拟数据与实际监测结果吻合较好,说明优化后的设计方案是合理的.  相似文献   

3.
王聪  朱永全 《科学技术与工程》2020,20(22):9196-9201
富水隧道开挖易引起突涌水、掌子面失稳和支护结构位移过大等问题,采用帷幕注浆可加固围岩并止水,进而保障隧道施工安全。为寻求合理超前帷幕注浆范围,本文依托京张铁路正盘台隧道实际,通过FLAC3D数值模拟手段建立了渗流场与应力场的耦合模型,研究深埋富水段隧道超前帷幕不同注浆范围对围岩稳定性和渗流规律的影响,从而指导工程实践。研究表明:全断面帷幕注浆和全周边注浆可较好满足正盘台隧道不同渗水段安全需求。  相似文献   

4.
为研究超大直径盾构隧道穿越岩溶发育区地表注浆合理加固范围,以武汉市某在建工程为依托,设计了以围岩等级、溶洞尺寸及溶洞充填范围为影响因素的正交试验,采用了三维数值方法求解不同方位溶洞与超大直径盾构隧道的最小安全距离,并提出了以最小安全距离主要因素为分段计算准则的地表注浆加固范围确定方法。结果表明:当溶洞位于隧道上方、侧方及下方时,最小安全距离的主要影响因素分别为溶洞尺寸、围岩等级及溶洞尺寸;当溶洞位于隧道上方时,分为4个区段,加固范围在12m~22.5m之间,当溶洞位于隧道侧方时,分为4个区段,加固范围在8m~15m之间,当溶洞位于隧道下方时,分为5个区段,加固范围在8m~15.5m之间。研究成果可为类似工程注浆设计与施工提供参考。  相似文献   

5.
深孔注浆技术在盾构始发端头土体加固施工中的应用   总被引:1,自引:0,他引:1  
结合深圳地铁二号线工程实例,论述了深孔注浆技术在盾构始发端头土体加固施工中的应用.实践表明,采用深孔注浆技术在对盾构端头土体加固也可以保证盾构的顺利始发,以便为今后类似工程借鉴.  相似文献   

6.
为探明施工隧道穿越断层破碎带时何种断层形态对围岩稳定性影响最为显著,以绵九高速公路五里坡隧道不同断层形态为例,采用三因素四水平数值模拟正交试验对围岩敏感性分析。此外,为避免隧道开挖至断层破碎带时围岩发生较大变形及破坏,保证隧道施工过程安全,对断层的响应特性进行概括,需对断层段围岩注浆加固提高其稳定性。最后,对注浆加固圈厚度分别为:0m、1m、2m、3m的断层段隧道施工过程进行FLAC 3D三维模拟,采用位移控制率均值K对隧道断层及前后段整个区段的围岩控制效果进行定量评价。结果表明:1)断层倾向在各水平条件下变化时,拱顶沉降和边墙位移基本不发生改变,其余两因素对隧道拱顶沉降和边墙位移的影响程度分别为:断层厚度>断层倾角、断层倾角>断层厚度。2)注浆加固圈厚度由0m递增至3m时,隧道轴向位移和塑性区面积依次减少,但注浆加固效果也明显下降。3)通过围岩控制率k定量分析注浆加固对位移的控制效果,断层前后段的位移控制率均小于断层处。可见,在既能保证工程安全,又能减少注浆的使用,加固圈为2m时效果最好。  相似文献   

7.
为确定软土地层浅埋超大直径盾构始发端头加固的合理范围,以珠海杧州隧道为工程背景,采用有限元建模分析,研究了端头加固范围对素混凝土墙破除以及盾构始发掘进过程地层变形的影响。基于数值分析结果,以端头中心点水平位移为控制目标,得出横、竖向合理加固厚度约为0.28倍隧道开挖面直径,略大于理论计算值和工程经验值。盾构掘进模拟结果表明,当纵向加固长度超过盾构机长度后,横断面受剪区域未与地表形成“塑性贯通”,端头盾构掘进对地表扰动程度较低;如以地表最大沉降为控制值,软土地层合理加固长度为1.14倍盾构机长度,该结果与理论计算值接近,而略小于工程经验值。  相似文献   

8.
曹思诚  谢雪  王海 《天津科技》2010,37(2):37-40
在天津海河"共同沟"盾构项目以普通水泥-水玻璃双液浆为注浆加固材料,采用水平前进尺分段注浆方式,成功实施了端头加固,保证了盾构的安全始发。依例阐述了软土地层盾构施工端头水平注浆加固设计、施工工艺。  相似文献   

9.
马芸  段琼  桂超 《科学技术与工程》2020,20(21):8724-8731
为确定盾构隧道端头加固所需范围,以天津地铁6号线宜宾道站-鞍山西道站区间隧道工程为背景,基于大型通用有限元程序ABAQUS进行三维建模,土体采用Mohr-Coulomb本构模型,对破除封门及开挖状态下的盾构施工进行了参数化数值分析。结果表明:盾构破除封门状态下,纵向土体最佳的加固长度为9 m。考虑到地下水的影响,端头土体纵向加固长度宜为盾构主机长度加上1.5~2.0 m止水厚度,最后的纵向加固长度宜取12 m;盾构处于开挖状态下,纵向土体加固长度为12 m,盾构机尾即将离开加固区时,盾构机机头与机尾的最大竖向位移为15.5 mm,倾斜角度为0.1°,故此工况下盾构机不会产生"磕头"现象。采用盾构隧道端头加固参数可以确保该区间隧道工程开挖状态下施工安全,对软土地区类似工程具有重要的理论与工程意义。  相似文献   

10.
为研究泥水盾构双洞先后下穿施工影响下既有挡墙式路基的沉降控制措施,依托京沈客专望京双洞盾构隧道施工下穿北京机场线路基工程,通过分析现场监测数据及盾构施工参数,在阐明了路基的沉降规律基础上,总结了控制沉降的盾构施工参数调控和注浆加固、沉降补偿的经验.研究结果表明:掘进各参数间、泥浆各参数间的关联密切;合理且较高的顶推力和泥水压力、较高比重和黏度的浆液可确保在地层扰动小的情况下盾构快速通过穿越段;理论注浆量2.5倍的同步注浆量和大于泥水仓压力0.15~0.2 MPa的注浆压力可确保盾尾建筑空隙充填密实;地表预注浆充分改良加固了地层、适度抬升了路基,注浆压力1.2 MPa的地表跟踪注浆及时有效地抑制、补偿了路基沉降,注浆压力1.2 MPa和速度100 L/min的隧洞内加强注浆减小了路基工后沉降.  相似文献   

11.
针对成都地铁18号线天府新站-龙泉山隧道进口端盾构区间和合江车辆段出入线组成的上下重叠隧道进行了施工技术研究,提出了"下部隧道盾构掘进参数控制+下部隧道围岩和夹层土体注浆双加固+下部隧道内设管片支撑结构+上部隧道盾构掘进参数控制"施工措施,建立了地铁区间小间距重叠隧道大直径盾构施工技术。经管片支撑结构应力、地表沉降和下隧道管片结构变形监测结果分析,验证了建立的技术的可行性,安全快速地完成了施工任务,对今后类似工程提供参考。  相似文献   

12.
针对隧道施工过程中下穿断层地段,岩体破碎,且隧道岩溶水发育,为确保施工安全,减少对地表的影响,文章提出了采用水泥-水玻璃浆液的方法对隧道围岩进行堵水和加固,并通过工程实例沪昆客专(贵州段)茅坪山隧道施工为例,对水泥-水玻璃注浆技术施工方法及施工步骤进行了详细的说明描述。  相似文献   

13.
本文依托太原铁路枢纽新建西南环线盾构隧道,结合盾构施工中的监测资料,利用有限元分析软件进行数值模拟分析,在考虑流固耦合作用下,并结合实际监测资料,研究了盾构下穿高架桥时地表和地下结构的稳定性,得出了地表、桥承台和桥桩的变形规律及隧道周围孔隙水压力分布规律。研究结果表明:在富水地层中盾构下穿高架桥工程中,考虑流固耦合作用是必要且合理的;盾构隧道施工前采用隔离桩结合深层地层注浆的加固措施能有效地控制地表、桥承台和桥桩变形;盾构掘进过程中主要影响桥桩水平横向位移,对水平纵向和竖直方向位移影响较小;桥桩顶部受到的附加弯矩较大;深层地层注浆加固措施能减弱隧道周围流固耦合作用,降低隧道内涌水风险。  相似文献   

14.
吴松锋  刘忠  李奇  胡丰产 《科学技术与工程》2022,22(35):15775-15783
富水隧道的施工中往往采用帷幕注浆法对围岩进行堵水加固,需准确获取富水深埋隧道帷幕注浆法加固后隧道围岩的位移场与应力场大小;基于流固耦合理论,建立隧道注浆帷幕力学模型,推导了围岩位移与有效应力的解析式;以大瑞铁路某富水深埋隧道为工程背景,采用建立的力学模型计算了6种加固方案,并分析了围岩剪切模量和弹性系数对位移场与应力场变化的影响;通过与有限元数值模拟结果以及现场监测结果对比,验证所建立力学模型的准确性。研究结果表明:所建立的力学模型可较为准确地计算帷幕注浆法施工的隧道围岩位移与有效应力;较大的剪切模量和弹性系数可抑制围岩位移,但会增大围岩的径向和环向有效应力。  相似文献   

15.
为研究盾构隧道下穿施工对上方高耸结构筏板基础的影响,应用数值模拟与工程实测相结合的方法,对盾构隧道下穿高耸结构筏板基础建筑物过程中的变形响应规律、加固措施等进行了研究.研究成果表明:盾构隧道施工对沉降监测点产生影响的纵向水平区间约为监测点前3D(D为盾构隧道直径)至监测点后3D;倾斜监测点产生影响的纵向水平区间约为监测点前D至监测点后5D.盾构隧道穿越前对高耸结构进行注浆预加固可有效减小筏板基础倾斜及高耸结构层间位移角.高耸结构水平位移随着隧道施工的进行处于动态变化中,对施工过程中出现的较大层间位移应充分重视.  相似文献   

16.
为研究超大断面浅埋黄土隧道大变形控制技术及效果,依托隧道大变形事故案例,对隧道围岩变形破坏特征及原因进行分析,结合隧道地质条件及围岩特性,提出了合理有效的围岩变形控制技术及施工工艺,并应用数值模拟和现场测试对3种加固措施工况下的变形及应力进行分析。研究结果表明:超大断面浅埋黄土隧道围岩变形主要表现为前期变形速率大,变形持续时间长,累计变形量大,拱顶最大累计沉降为124.3 cm,围岩变形受开挖扰动和持续降雨影响显著;采取临时套拱加固有效抑制变形的持续发展,避免塌方事故的发生,而径向注浆加固和强化支护参数为后续顺利完成大变形段换拱施工提供安全保障;浅埋偏压地段采用地表超前预注浆技术,有效地改善上覆围岩特性,后续施工累计变形均在预留变形量范围内,确保了施工安全和进度。  相似文献   

17.
盾构下穿地铁运营隧道沉降规律分析   总被引:4,自引:0,他引:4  
为确保盾构安全顺利地下穿地铁运营隧道,避免下穿过程中引起运营隧道过量沉降,影响既有线运营安全,以北京地铁14号线阜通西站~望京站盾构区间隧道下穿地铁15号线运营隧道为工程背景,对左右线盾构2次下穿15号线运营隧道施工过程和沉降情况进行对比分析。在分析右线盾构首次下穿地铁运营隧道结构沉降规律的基础上,制定了左线盾构二次下穿运营隧道的施工参数和相关控制措施,确保了二次下穿运营隧道结构沉降控制在-3 mm以内,取得了良好的效果。研究结果表明:通过设定较高的土压力,采用盾体上的径向注浆孔向盾体和土体之间的空隙注入填充物,提高同步注浆浆液质量和及时进行二次补浆等措施能够有效减小运营隧道结构沉降;盾构施工引起15号线运营隧道的横向沉降范围与施工参数基本无关,左右线穿越有明显的叠加效应,叠加区域内,横向沉降显著影响区域在0~4 D;在不采取超前预加固措施的基础上,仅通过合理设定盾构施工参数和隧道内采取相关措施,能够将15号线隧道结构沉降控制在-3 mm以内。研究结果具有较强的工程实用价值,特别是对盾构下穿运营隧道施工方案的制定具有较强参考价值,也可为国内外类似盾构下穿既有线工程提供借鉴。  相似文献   

18.
盾构始发端头土体加固时,如何保证加固土体的稳定性是需要解决的关键问题.结合苏州地铁某车站西端头盾构始发工程(无含水层),运用通用有限元分析软件在封门拆除这种最不利的工况下对该工程始发掘进进行了模拟分析.由数值模拟知,当纵向加固长度为3 m时,沿盾构隧道掘进方向土体向工作井内移动,最大位移发生在暴露掌子面的中心处,达12.92 mm,封门上方地表土体变形最大,沉降约为3.0 mm,强加固区范围内土体受力均在设计强度范围之内,计算出安全系数分别为2.05、1.47和1.30;在无含水层的盾构始发端头,纵向加固长度为3 m时就可以在强度上满足要求,且安全系数有富余.  相似文献   

19.
基于地层损失理论的盾构隧道沉降分析及控制措施研究   总被引:1,自引:1,他引:0  
对于盾构隧道施工产生的地表沉降的预测及控制一直是工程界亟待解决的难题。本文依托南京市地铁3号线明发广场站~绕城北区间隧道的工程实例,运用地层损失理论及现场监测等手段进行了盾构隧道沉降分析,并对其沉降控制措施进行了研究,结果表明:盾构隧道施工过程中引起的地层损失是导致地表沉降的主要原因;地层损失理论中的peck公式适用于粘土层和砂岩层中盾构隧道沉降预测,其精确度满足工程要求;盾构隧道沉降的影响因素较多,且在整个盾构施工过程中各个阶段产生的沉降机理、规律各不相同;通过注浆加固、严格控制盾构机姿态、管片组装质量可减小地应力损失,减小盾构施工引起的地表沉降。所得结论对于类似工程有极大借鉴意义。  相似文献   

20.
为研究卵石地层条件下盾构下穿施工时既有盾构隧道的沉降特征及其控制措施,依托北京地铁16号线盾构下穿既有地铁4号线盾构隧道工程,通过分析既有隧道沉降的数值模拟结果,结合现场监测数据和盾构施工参数,探讨了盾构的适应性改造,总结了隧道沉降的规律,阐明了调控盾构施工参数的经验。研究表明,为适应卵石地层条件,盾构须提高构件耐磨性、增设注浆及泡沫系统;既有隧道沉降在盾构通过时变化较大,而在盾构到达前和通过后变化较小,且盾构施工的再次扰动影响显著;为有效地控制既有隧道沉降,盾构施工参数应根据监测数据实时调控,保持较高的土仓压力和顶推力,通过提高注浆压力确保注浆质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号