首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.  相似文献   

2.
A sodium-channel mutation causes isolated cardiac conduction disease   总被引:25,自引:0,他引:25  
Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a chief function of the Na+ channel is to initiate cardiac impulse conduction. Here we provide the first functional characterization of an SCN5A mutation that causes a sustained, isolated conduction defect with pathological slowing of the cardiac rhythm. By analysing the SCN5A coding region, we have identified a single mutation in five affected family members; this mutation results in the substitution of cysteine 514 for glycine (G514C) in the channel protein. Biophysical characterization of the mutant channel shows that there are abnormalities in voltage-dependent 'gating' behaviour that can be partially corrected by dexamethasone, consistent with the salutary effects of glucocorticoids on the clinical phenotype. Computational analysis predicts that the gating defects of G514C selectively slow myocardial conduction, but do not provoke the rapid cardiac arrhythmias associated previously with SCN5A mutations.  相似文献   

3.
Sensory acuity and motor dexterity deteriorate when human limbs cool down, but pain perception persists and cold-induced pain can become excruciating. Evolutionary pressure to enforce protective behaviour requires that damage-sensing neurons (nociceptors) continue to function at low temperatures. Here we show that this goal is achieved by endowing superficial endings of slowly conducting nociceptive fibres with the tetrodotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 (ref. 2). This channel is essential for sustained excitability of nociceptors when the skin is cooled. We show that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs. In contrast, the inactivation properties of Na(v)1.8 are entirely cold-resistant. Moreover, low temperatures decrease the activation threshold of the sodium currents and increase the membrane resistance, augmenting the voltage change caused by any membrane current. Thus, in the cold, Na(v)1.8 remains available as the sole electrical impulse generator in nociceptors that transmits nociceptive information to the central nervous system. Consistent with this concept is the observation that Na(v)1.8-null mutant mice show negligible responses to noxious cold and mechanical stimulation at low temperatures. Our data present strong evidence for a specialized role of Na(v)1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.  相似文献   

4.
Zhang X  Ren W  DeCaen P  Yan C  Tao X  Tang L  Wang J  Hasegawa K  Kumasaka T  He J  Wang J  Clapham DE  Yan N 《Nature》2012,486(7401):130-134
Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05?? resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr?178 and Leu?179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser?181 and Glu?183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.  相似文献   

5.
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2?? resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.  相似文献   

6.
The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.  相似文献   

7.
研究了醇脱氢酶基因 (Adh)诱变体与正常基因相互作用后的部分显性现象 .所有 8个由乙基亚硝基尿素 (ENU)和 1个 X-射线诱变体仅为单碱基置换体 ,其余 3个 X-射线诱变体则为 9~2 1个碱基的缺失体 .这 1 2个诱变体 (除 1个外 )都能产生可测的突变肽 ,其中 7个不能与正常肽形成二聚体 ,杂合体酶活性约为正常纯合体的 1 /2 ;另 4个形成二聚体 .形成二聚体突变基因产物中所有氨基酸突变均发生在肽链 1 82~ 1 94氨基酸区域 ,可见该区域对于二聚化不是必需的 ,该序列可能是重要的催化表面功能区  相似文献   

8.
Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.  相似文献   

9.
State-dependent cross-inhibition between transmitter-gated cation channels   总被引:12,自引:0,他引:12  
Khakh BS  Zhou X  Sydes J  Galligan JJ  Lester HA 《Nature》2000,406(6794):405-410
Transmitter-gated cation channels are detectors of excitatory chemical signals at synapses in the nervous system. Here we show that structurally distinct alpha3beta4 nicotinic and P2X2 channels influence each other when co-activated. The activation of one channel type affects distinct kinetic and conductance states of the other, and co-activation results in non-additive responses owing to inhibition of both channel types. State-dependent inhibition of nicotinic channels is revealed most clearly with mutant P2X2 channels, and inhibition is decreased at lower densities of channel expression. In synaptically coupled myenteric neurons, nicotinic fast excitatory postsynaptic currents are occluded during activation of endogenously co-expressed P2X channels. Our data provide a molecular basis and a synaptic context for cross-inhibition between transmitter-gated channels.  相似文献   

10.
Sokolov S  Scheuer T  Catterall WA 《Nature》2007,446(7131):76-78
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle Na(V)1.4 channel. This 'gating pore current' is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-D-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. Our results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalaemic periodic paralysis. This gain-of-function gating pore current would contribute in an important way to the dominantly inherited membrane depolarization, action potential failure, flaccid paralysis and cytopathology that are characteristic of hypokalaemic periodic paralysis. A survey of other ion channelopathies reveals numerous examples of mutations that would be expected to cause gating pore current, raising the possibility of a broader impact of gating pore current in ion channelopathies.  相似文献   

11.
Wolfe JT  Wang H  Howard J  Garrison JC  Barrett PQ 《Nature》2003,424(6945):209-213
Low-voltage-activated (LVA) T-type calcium channels have a wide tissue distribution and have well-documented roles in the control of action potential burst generation and hormone secretion. In neurons of the central nervous system and secretory cells of the adrenal and pituitary, LVA channels are inhibited by activation of G-protein-coupled receptors that generate membrane-delimited signals, yet these signals have not been identified. Here we show that the inhibition of alpha1H (Ca(v)3.2), but not alpha(1G) (Ca(v)3.1) LVA Ca2+ channels is mediated selectively by beta2gamma2 subunits that bind to the intracellular loop connecting channel transmembrane domains II and III. This region of the alpha1H channel is crucial for inhibition, because its replacement abrogates inhibition and its transfer to non-modulated alpha1G channels confers beta2gamma2-dependent inhibition. betagamma reduces channel activity independent of voltage, a mechanism distinct from the established betagamma-dependent inhibition of non-L-type high-voltage-activated channels of the Ca(v)2 family. These studies identify the alpha1H channel as a new effector for G-protein betagamma subunits, and highlight the selective signalling roles available for particular betagamma combinations.  相似文献   

12.
Chelur DS  Ernstrom GG  Goodman MB  Yao CA  Chen L  O' Hagan R  Chalfie M 《Nature》2002,420(6916):669-673
Mechanosensory transduction in touch receptor neurons is believed to be mediated by DEG/ENaC (degenerin/epithelial Na+ channel) proteins in nematodes and mammals. In the nematode Caenorhabditis elegans, gain-of-function mutations in the degenerin genes mec-4 and mec-10 (denoted mec-4(d) and mec-10(d), respectively) cause degeneration of the touch cells. This phenotype is completely suppressed by mutation in a third gene, mec-6 (refs 3, 4), that is needed for touch sensitivity. This last gene is also required for the function of other degenerins. Here we show that mec-6 encodes a single-pass membrane-spanning protein with limited similarity to paraoxonases, which are implicated in human coronary heart disease. This gene is expressed in muscle cells and in many neurons, including the six touch receptor neurons. MEC-6 increases amiloride-sensitive Na+ currents produced by MEC-4(d)/MEC-10(d) by approximately 30-fold, and functions synergistically with MEC-2 (a stomatin-like protein that regulates MEC-4(d)/MEC-10(d) channel activity) to increase the currents by 200-fold. MEC-6 physically interacts with all three channel proteins. In vivo, MEC-6 co-localizes with MEC-4, and is required for punctate MEC-4 expression along touch-neuron processes. We propose that MEC-6 is a part of the degenerin channel complex that may mediate mechanotransduction in touch cells.  相似文献   

13.
Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation   总被引:16,自引:0,他引:16  
One or more of three Gi proteins, Gi1-3, mediates hormonal inhibition of adenylyl cyclase. Whether this inhibition is mediated by the alpha or by the beta gamma subunits of Gi proteins is unclear. Mutations inhibiting the intrinsic GTPase activity of another G protein, the stimulatory regulator of adenylyl cyclase (Gs), constitutively activate it by replacing either of two conserved amino acids in its alpha subunit (alpha s). These mutations create the gsp oncogene which is found in human pituitary and thyroid tumours. In a second group of human endocrine tumours, somatic mutations in the alpha subunit of Gi2 replace a residue cognate to one of those affected by gsp mutations. This implies that the mutations convert the alpha i2 gene into a dominantly acting oncogene, called gip2, and that the mutant alpha i2 subunits are constitutively active. We have therefore assessed cyclic AMP accumulation in cultured cells which stably or transiently express exogenous wild-type alpha i2 complementary DNA or either of two mutant alpha i2 cDNAs. The results show that putatively oncogenic mutations in alpha i2 constitutively activate the protein's ability to inhibit cAMP accumulation.  相似文献   

14.
15.
Muscular dysgenesis (mdg) is a spontaneous recessive lethal mutation in the mouse. The disease is characterized by a total lack of excitation-contraction coupling in embryonic skeletal muscle. This developmental abnormality is associated with a drastic deficiency in the expression of voltage-sensitive Ca2+ channels in skeletal muscle without alteration of the properties of voltage-sensitive Na+ channels or of voltage-sensitive Ca2+ channels in cardiac and neuronal cells. Membrane couplings between sarcoplasmic reticulum and the transverse tubules, known as triads, were also found to be drastically altered in embryonic muscle of the homozygous mutant (mdg/mdg). Triads in the mdg/mdg muscle were less numerous, disorganized and lacked spaced densities. This paper shows that co-culture of mdg/mdg myotubes with normal spinal cord neurons re-establishes Ca2+ channel activity, contraction and normal triad organization. The decrease thus cannot be due to a mutation of the Ca2+ channel as previously suggested. Normal nerve cells may supply an essential factor to mutant muscle cells.  相似文献   

16.
合成了新颖苯并18冠6配合物{[Na(B18-C-6)]_6[Pt(SCN)_6]}[Pt(SCN)_6](SCN)_2,通过红外光谱、单晶X-射线衍射对该配合物进行了表征。配合物为三方晶系,空间群为R-3,晶体学数据a=b=1.993 3(3),c=2.976 0(6)nm,α=β=90,γ=120°,V=10.240(3)nm~3,Z=3,D_(calcd)=1.564 g/cm~3,F(000)=4 908,配合物由一个配阴离子[Pt(SCN)_6]~(2-)与一个配阳离子{[Na(B18-C-6)]_6[Pt(SCN)_6]}~(4+)和两个SCN~-阴离子组成,相邻{[Na(B18-C-6)]_6[Pt(SCN)_6]}~(4+)通过Na-O键相互作用形成三维网状结构,[Pt(SCN)_6]~(2-)配阴离子和两个SCN~-阴离子起平衡电荷的作用。  相似文献   

17.
The cytokine transforming growth factor-beta (TGF-beta) is an important negative regulator of adaptive immunity. TGF-beta is secreted by cells as an inactive precursor that must be activated to exert biological effects, but the mechanisms that regulate TGF-beta activation and function in the immune system are poorly understood. Here we show that conditional loss of the TGF-beta-activating integrin alpha(v)beta8 on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. This autoimmune phenotype is largely due to lack of alpha(v)beta8 on dendritic cells, as mice lacking alpha(v)beta8 principally on dendritic cells develop identical immunological abnormalities as mice lacking alpha(v)beta8 on all leukocytes, whereas mice lacking alpha(v)beta8 on T cells alone are phenotypically normal. We further show that dendritic cells lacking alpha(v)beta8 fail to induce regulatory T cells (T(R) cells) in vitro, an effect that depends on TGF-beta activity. Furthermore, mice lacking alpha(v)beta8 on dendritic cells have reduced proportions of T(R) cells in colonic tissue. These results suggest that alpha(v)beta8-mediated TGF-beta activation by dendritic cells is essential for preventing immune dysfunction that results in inflammatory bowel disease and autoimmunity, effects that are due, at least in part, to the ability of alpha(v)beta8 on dendritic cells to induce and/or maintain tissue T(R) cells.  相似文献   

18.
Payandeh J  Scheuer T  Zheng N  Catterall WA 《Nature》2011,475(7356):353-358
Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7?? resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~4.6?? wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.  相似文献   

19.
在Pu原子的相对论有效原子实势近似下,用密度泛函B3LYP方法计算得到PuH2分子基态(X7A1)的平衡结构为R(PuH)=0.2169 nm,∠HPuH=160.34°,离解能为3.0045 eV,谐振频率为293.4140,1209.2715和1262.2149 cm-1.用多体展式理论得到PuH2基态分子的分析势能函数,根据该分析势能函数,用准经典方法研究Pu(7Fg)+H2(X1∑+g,v=J=0)的分子反应动力学,结果表明Pu(7Fg)与H2(X1∑g+,0,0)碰撞是弹性碰撞.  相似文献   

20.
Rose CR  Blum R  Pichler B  Lepier A  Kafitz KW  Konnerth A 《Nature》2003,426(6962):74-78
The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号