首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The nucleus of a somatic cell could be dedifferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellucida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic stem cells was 16.1%, which was significantly higher than that of both the adult mouse fibroblast cells (0%-3.1%, P < 0.05) and fetus mouse fibroblast cells (2.1%-3.7%, P < 0.05). Chromosome analysis confirmed that blastocyst cells were derived from ES donor cell. These observations show that reprogramming is easier in interspecific embryos reconstructed with ES cells than that reconstructed with somatic cells, and that ES cells have the higher ability to direct the reconstructed embryos development normally than fibroblast cells.  相似文献   

3.
Meissner A  Jaenisch R 《Nature》2006,439(7073):212-215
The derivation of embryonic stem (ES) cells by nuclear transfer holds great promise for research and therapy but involves the destruction of cloned human blastocysts. Proof of principle experiments have shown that 'customized' ES cells derived by nuclear transfer (NT-ESCs) can be used to correct immunodeficiency in mice. Importantly, the feasibility of the approach has been demonstrated recently in humans, bringing the clinical application of NT-ESCs within reach. Altered nuclear transfer (ANT) has been proposed as a variation of nuclear transfer because it would create abnormal nuclear transfer blastocysts that are inherently unable to implant into the uterus but would be capable of generating customized ES cells. To assess the experimental validity of this concept we have used nuclear transfer to derive mouse blastocysts from donor fibroblasts that carried a short hairpin RNA construct targeting Cdx2. Cloned blastocysts were morphologically abnormal, lacked functional trophoblast and failed to implant into the uterus. However, they efficiently generated pluripotent embryonic stem cells when explanted into culture.  相似文献   

4.
Eggan K  Baldwin K  Tackett M  Osborne J  Gogos J  Chess A  Axel R  Jaenisch R 《Nature》2004,428(6978):44-49
Cloning by nuclear transplantation has been successfully carried out in various mammals, including mice. Until now mice have not been cloned from post-mitotic cells such as neurons. Here, we have generated fertile mouse clones derived by transferring the nuclei of post-mitotic, olfactory sensory neurons into oocytes. These results indicate that the genome of a post-mitotic, terminally differentiated neuron can re-enter the cell cycle and be reprogrammed to a state of totipotency after nuclear transfer. Moreover, the pattern of odorant receptor gene expression and the organization of odorant receptor genes in cloned mice was indistinguishable from wild-type animals, indicating that irreversible changes to the DNA of olfactory neurons do not accompany receptor gene choice.  相似文献   

5.
Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from patient-specific cloned blastocysts via somatic cell nuclear transfer (SCNT), holds great promise for treating many human diseases using regenerative medicine. Teratoma formation and germline transmission have been used to confirm the pluripotency of mouse stem cells, but human embryonic stem cells (hESCs) have not been proven to be fully pluripotent owing to the ethical impossibility of testing for germ line transmis- sion, which would be the strongest evidence for full pluripotency. Therefore, formation of differentiated cells from the three somatic germ layers within a teratoma is taken as the best indicator of pluripotency in hESC lines. The possibility that these lines lack full multi- or pluripotency has not yet been evaluated. In this study, we established 16 mouse ESC lines, including 3 genetically defective nuclear transfer- ESC (ntESC) lines derived from SCNT blastocysts of infertile hermaphrodite F1 mice and 13 ntESC lines derived from SCNT blastocysts of normal F1 mice. We found that the defective ntESCs expressed all in vitro markers of pluripotency and could form teratomas that included derivatives from all three germ layers, but could not be transmitted via the germ line, in contrast with normal ntESCs. Our results in- dicate that teratoma formation assays with hESCs might be an insufficient standard to assess full pluripotency, although they do define multipotency to some degree. More rigorous standards are required to assess the safety of hESCs for therapeutic cloning.  相似文献   

6.
Generation of pluripotent stem cells from adult human testis   总被引:2,自引:0,他引:2  
Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.  相似文献   

7.
Properties and applications of embryonic stem cells   总被引:1,自引:0,他引:1  
Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult body in vivo, and can be induced to differentiate into many cell types under appropriate culture conditions in vitro. Using these properties, people have set up various differentiated systems of many cell types and tissues in vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells.  相似文献   

8.
9.
Silva J  Chambers I  Pollard S  Smith A 《Nature》2006,441(7096):997-1001
Through cell fusion, embryonic stem (ES) cells can erase the developmental programming of differentiated cell nuclei and impose pluripotency. Molecules that mediate this conversion should be identifiable in ES cells. One candidate is the variant homeodomain protein Nanog, which has the capacity to entrain undifferentiated ES cell propagation. Here we report that in fusions between ES cells and neural stem (NS) cells, increased levels of Nanog stimulate pluripotent gene activation from the somatic cell genome and enable an up to 200-fold increase in the recovery of hybrid colonies, all of which show ES cell characteristics. Nanog also improves hybrid yield when thymocytes or fibroblasts are fused to ES cells; however, fewer colonies are obtained than from ES x NS cell fusions, consistent with a hierarchical susceptibility to reprogramming among somatic cell types. Notably, for NS x ES cell fusions elevated Nanog enables primary hybrids to develop into ES cell colonies with identical frequency to homotypic ES x ES fusion products. This means that in hybrids, increased Nanog is sufficient for the NS cell epigenome to be reset completely to a state of pluripotency. We conclude that Nanog can orchestrate ES cell machinery to instate pluripotency with an efficiency of up to 100% depending on the differentiation status of the somatic cell.  相似文献   

10.
Changing potency by spontaneous fusion   总被引:204,自引:0,他引:204  
Ying QL  Nichols J  Evans EP  Smith AG 《Nature》2002,416(6880):545-548
Recent reports have suggested that mammalian stem cells residing in one tissue may have the capacity to produce differentiated cell types for other tissues and organs 1-9. Here we define a mechanism by which progenitor cells of the central nervous system can give rise to non-neural derivatives. Cells taken from mouse brain were co-cultured with pluripotent embryonic stem cells. Following selection for a transgenic marker carried only by the brain cells, undifferentiated stem cells are recovered in which the brain cell genome has undergone epigenetic reprogramming. However, these cells also carry a transgenic marker and chromosomes derived from the embryonic stem cells. Therefore the altered phenotype does not arise by direct conversion of brain to embryonic stem cell but rather through spontaneous generation of hybrid cells. The tetraploid hybrids exhibit full pluripotent character, including multilineage contribution to chimaeras. We propose that transdetermination consequent to cell fusion 10 could underlie many observations otherwise attributed to an intrinsic plasticity of tissue stem cells 9.  相似文献   

11.
Mouse embryonic stem cells(mESCs)derived from inner cell mass(ICM)of pre-implantation embryos,can maintain undifferentiated state when cultured in N2B27 medium supplemented with GSK3inhibitor CHIR99021 and MEK inhibitor PD0325901(‘‘2i’’)and leukemia inhibitor factor(LIF).Compare to conventional culture medium,all components of this medium are defined.With the N2B27 medium,‘‘2i’’and LIF,mESCs can contribute to the germline of the chimeric embryos,however,whether the‘‘all-ES cells’’mice can been generated by tetraploid complementation is unclear yet,while the tetraploid complementation serve as a golden standard to assess the pluripotency of ES cells.Here,our study showed that mESCs derived and cultured with the N2B27 complete medium could generate fertile mice by tetraploid complementation.In addition,the survival rate of tetraploid complementation mice produced by inbred mES cell lines is higher than the conventional culture condition,and increased the percentage of Oct4 positive cells contrast to conventional medium either.Therefore,the N2B27 medium supplemented with‘‘2i’’and LIF is an alternative choice forthe derivation and long-term culture of mouse embryonic stem cells.  相似文献   

12.
Mammalian cloning has been one of the most active research topics in the world. Cloning within vitro culured foetal fibroblast cells, in comparison with embryonic cells, can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals, but also to utilize the unlimited fibroblast cells to produce large numbers of clonings. The preliminary results are as follows: (i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%, 77% and 35%, 31%, respectively. There is no significant statistical difference between them, (ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines, which are the first cloned mammals from somatic cells in China. This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development, and a novel technique for the cloning of animals with a high-level expression of transgene(s).  相似文献   

13.
M Hooper  K Hardy  A Handyside  S Hunter  M Monk 《Nature》1987,326(6110):292-295
Embryonal stem (ES) cell lines, established in culture from peri-implantation mouse blastocysts, can colonize both the somatic and germ-cell lineages of chimaeric mice following injection into host blastocysts. Recently, ES cells with multiple integrations of retroviral sequences have been used to introduce these sequences into the germ-line of chimaeric mice, demonstrating an alternative to the microinjection of fertilized eggs for the production of transgenic mice. However, the properties of ES cells raise a unique possibility: that of using the techniques of somatic cell genetics to select cells with genetic modifications such as recessive mutations, and of introducing these mutations into the mouse germ line. Here we report the realization of this possibility by the selection in vitro of variant ES cells deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT; EC 2.4.2.8), their use to produce germline chimaeras resulting in female offspring heterozygous for HPRT-deficiency, and the generation of HPRT-deficient preimplantation embryos from these females. In human males, HPRT deficiency causes Lesch-Nyhan syndrome, which is characterized by mental retardation and self-mutilation.  相似文献   

14.
Chung Y  Klimanskaya I  Becker S  Marh J  Lu SJ  Johnson J  Meisner L  Lanza R 《Nature》2006,439(7073):216-219
The most basic objection to human embryonic stem (ES) cell research is rooted in the fact that ES cell derivation deprives embryos of any further potential to develop into a complete human being. ES cell lines are conventionally isolated from the inner cell mass of blastocysts and, in a few instances, from cleavage stage embryos. So far, there have been no reports in the literature of stem cell lines derived using an approach that does not require embryo destruction. Here we report an alternative method of establishing ES cell lines-using a technique of single-cell embryo biopsy similar to that used in pre-implantation genetic diagnosis of genetic defects-that does not interfere with the developmental potential of embryos. Five putative ES and seven trophoblast stem (TS) cell lines were produced from single blastomeres, which maintained normal karyotype and markers of pluripotency or TS cells for up to more than 50 passages. The ES cells differentiated into derivatives of all three germ layers in vitro and in teratomas, and showed germ line transmission. Single-blastomere-biopsied embryos developed to term without a reduction in their developmental capacity. The ability to generate human ES cells without the destruction of ex utero embryos would reduce or eliminate the ethical concerns of many.  相似文献   

15.
Previous research has shown that mouse embryonic stem (ES) cells can be induced to form neural cells in adherent monocultures. In this study, pluripotent stem (iPS) C5 cells derived from meningeal membranes were converted successfully into neural-like cells using the same protocol generally used for ES cells. Meningeal-iPS C5 cells were induced to express neural markers Sox1, Sox3, Pax6, Nestin and Tuj1 and to reduce the expression of ES markers Oct4 and Nanog during neural differentiation, and can be differentiated into Pax6 and Nestin positive neural progenitors, and further into neuronal, astrocytic, and oligodendrocytic cells. In vitro differentiation of iPS cells into patient-specific neural cells could serve as a model to study mechanisms of genetic diseases and develop promising candidates for therapeutic applications in dysfunctional or aging neural tissues. Meningeal cells express a high level of the embryonic master regulator Sox2, allowing them to be reprogrammed into iPS cells more easily than other somatic cells.  相似文献   

16.
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.  相似文献   

17.
Embryonic stem (ES) cells, the totipotent outgrowths of blastocysts, can be cultured and manipulated in vitro and then returned to the embryonic environment where they develop normally and can contribute to all cell lineages. Maintenance of the stem-cell phenotype in vitro requires the presence of a feeder layer of fibroblasts or of a soluble factor, differentiation inhibitory activity (DIA) produced by a number of sources; in the absence of DIA the ES cells differentiate into a wide variety of cell types. We recently noted several similarities between partially purified DIA and a haemopoietic regulator, myeloid leukaemia inhibitory factor (LIF), a molecule which induces differentiation in M1 myeloid leukaemic cells and which we have recently purified, cloned and characterized. We demonstrate here that purified, recombinant LIF can substitute for DIA in the maintenance of totipotent ES cell lines that retain the potential to form chimaeric mice.  相似文献   

18.
H R Rodewald  S Paul  C Haller  H Bluethmann  C Blum 《Nature》2001,414(6865):763-768
The thymus is organized into medullary and cortical zones that support distinct stages of T-cell development. The formation of medulla and cortex compartments is thought to occur through invagination of an endodermal epithelial sheet into an ectodermal one at the third pharyngeal pouch and cleft, respectively. Epithelial stem/progenitor cells have been proposed to be involved in thymus development, but evidence for their existence has been elusive. We have constructed chimaeric mice by injecting embryonic stem (ES) cells into blastocysts using ES cells and blastocysts differing in their major histocompatibility complex (MHC) type. Here we show that the MHC class-II-positive medullary epithelium in these chimaeras is composed of cell clusters, most of which derive from either embryonic stem cell or blastocyst, but not mixed, origin. Thus, the medulla comprises individual epithelial 'islets' each arising from a single progenitor. One thymic lobe has about 300 medullary areas that originate from as few as 900 progenitors. Islet formation can be recapitulated after implantation of 'reaggregated fetal thymic organs' into mice, which shows that medullary 'stem' cells retain their potential until at least day 16.5 in fetal development. Thus, medulla-cortex compartmentalization is established by formation of medullary islets from single progenitors.  相似文献   

19.
Egli D  Rosains J  Birkhoff G  Eggan K 《Nature》2007,447(7145):679-685
Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.  相似文献   

20.
以昆明白小鼠成纤维细胞和胚胎干(ES)细胞作为供核细胞,以昆明白小鼠和日本大耳白兔的MⅡ期去核卵母细胞作为受体,采用核移植方法,构楚了克隆胚胎.在同种克隆中,以ES细胞为供核细胞的克隆胚胎卵裂率明显低于以成纤维细胞为供核细胞的克隆胚胎卵裂率(24.4%相对于56.9%,P〈0.05),1.8%的ES细胞克隆胚胎发育到囊胚阶段,而成纤维细胞克隆胚胎没能发育到囊胚阶段;在异种克隆中,以ES细胞为供核细胞的克隆胚胎卵裂率(89.6%)和囊胚发育率(18.8%)明显高于以成纤维细胞为供核细胞的克隆胚胎卵裂率(54.2%)和囊胚发育率(4.2%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号