首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
本文讨论了广义严格对角占优矩阵的特征,给出了判定广义严格对角占优矩阵的几个充分条件与一个充分必要条件。定义1 设A=(a_(ij))∈C~(n×n),如果对所有1≤i≤n,皆有则称A为行严格对角占优矩阵,记为A∈D。定义2 设A=(a_(ij))∈C~(n×n),若有一正向量d=(d_1,d_2,…,d_n)~T,使得  相似文献   

2.
α-双对角占优与非奇异H-矩阵的判定   总被引:2,自引:0,他引:2  
设A=(aij∈Cn×n),若α∈[0,1],使对i≠j(i,j∈〈n〉),均有aijaj j≥(RiRj)α(SiSj)1-α,则称A为α-双对角占优矩阵;一方面,利用矩阵的有向图的方法指出了不可约和α-双对角占优矩阵为非奇异H-矩阵的一个充分条件;另一方面研究了一类具不可约和α-双对角占优矩阵为H-矩阵的必要条件,进一步丰富和完善了α-双对角占优与非奇异H-矩阵的理论。  相似文献   

3.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i∈N,aii ≥Rαi(A)S1-αi(A),则称A为α - 链对角占优矩阵.利用α - 链对角占优矩阵、不可约α - 链对角占优矩阵、广义α - 链对角占优矩阵等概念及性质,给出了非奇异H - 矩阵几个简洁的判定条件.进一步丰富和完善了α - 链对角占优矩阵与判别非奇异H - 矩阵的理论,为相关领域如矩阵论、控制论、经济数学等提供了理论研究基础.  相似文献   

4.
本文利用矩阵块对角占优的性质,给出矩阵非奇异的几个判定条件。下面用 R~(n×n)表示 n 阶实方阵的全体,用 C~(n×n)表示 n 阶复方阵的全体,并令,Z~(n×n)={A=(a_(ij))∈R~(n×n)|a_(ij)|≤0,i≠j,1≤i,j≤n}若 A 是非奇异 M 一矩阵。则记 A∈M.引理1 设 A=(a_(ij))∈Z~(n×n),且 A_(ij)>0,1≤i≤n,令 A =,则 A∈M  相似文献   

5.
广义严格对角占优矩阵与非奇异M—矩阵的判定   总被引:9,自引:2,他引:7  
设A=(aij)∈Cn×n是复矩阵,若任意i∈N={1,2,…,n}都有|aii|>∑j≠i|aij|,则称A是严格对角占优矩阵.若存在正对角阵D使是AD严格对角占优矩阵,则称为广义严格对角占优矩阵.本文利用矩阵回路给出了广义严格对角占优矩阵与非奇异M矩阵的若干充分条件.改进和推广了已有的相应结果.  相似文献   

6.
0 引言和记号用简便的方法来判定矩阵的奇异性,且在非奇的情况下估计出行列式的下界,这在实际问题中具有重要用途.这个下界表征了矩阵的非奇异度,且在其他许多估计式中也常用到,比如矩阵特征值下界的估计就与行列式下界的估计密切相关.Ostrowski,石钟慈,王伯英对于对角占优矩阵的行列式的下界进行了讨论.本文取消对角占优条件,给出几类范围更广的矩阵的行列式的下界估计,且与文献[3]的结果互不包含. 设A=(a_(ij))∈C~(m×n)若|a_(ii)|≥∧_i(A),i∈N≡{1,…,n} ,其中∧_i(A)≡∑|a(ij)|,则称A为对角占优阵,记为A∈D_0。  相似文献   

7.
<正>设A=(ajk)(n×n)为n阶复矩阵(本文记为A∈Cn×n,记oj=sum from k=1 k≠j to n |ajk|,j=1,...,n若|ajj|>aj,j=1,…,n,则称a为(按行)严格对角占优矩阵.若(?)=1/2(A+Ax)为严格对角占优矩阵,则称A为共轭(严格)对角占优矩阵.关于各类对角占优矩阵特征值的分布,已在文  相似文献   

8.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n}),有aii.ajj>[αΛi(A)+(1-α)Si(A)].[αΛj(A)+(1-α)Sj(A)],则称A为严格α-双对角占优矩阵。首先推广严格α-双对角占优矩阵的概念到广义α-双对角占优矩阵;然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,进而可以判断非奇异H-矩阵,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。  相似文献   

9.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n}),有aiiajj>[αRi(A)+(1-α)Si(A)]×[αRj(A)+(1-α)Sj(A)],则称A为严格α-双对角占优矩阵。首先推广严格α-双对角占优矩阵的概念到广义α-双对角占优矩阵;然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。最后举例说明了所给结果的优越性。  相似文献   

10.
设 A=(a_(ij))是 n 阶对角占优矩阵,即若记 N={1,2,…,n},则对任意 i∈N 都有|a_n|≥sum from j=1 j≠i to n |a_(ij)|.本文所涉及的矩阵总假定是对角占优的。记 J(A)={i∈N||a_(ii)|>sum from j=1 j≠i to n |a_(ij)|}.当 J(A)=N 时,A 为严格对角占优矩阵,当 J(A)≠Φ,且 A 不可约时,A 是不可约对角占优矩阵,这两种矩阵都是非奇异的。当 J(A)≠Φ,A 为可约矩阵时,一九七四年 P.N.shivakumar 和 kim Ho Chew 给出了它为非奇异的一个充分条件:定理.设 A 为可约矩阵,J(A)≠Φ,若对每个 (?)J(A),都存在由 A 中非零元素构成的序列(也叫非零元素链):a_(ii_1),a_(i_1i_2),…,a_(i_(s-1))i_s,i_s∈J(A),那末 A 是非奇异的.P.N Shivakumar 和 kim Ho Chew 在证明此定理时,引用了 M—矩阵的性质,篇幅  相似文献   

11.
非奇异H-矩阵新的充分条件   总被引:1,自引:0,他引:1  
在数值线性代数的理论和应用中,H-矩阵是一类非常重要的矩阵.设A=(aij)∈Cn×n,若存在α∈(0,1),使i∈N,|aii|≥Riα(A)S1i-α(A),则称A为α-链对角占优矩阵.首先推广α-链对角占优矩阵的概念到广义α-链对角占优矩阵,通过利用α-链对角占优矩阵的性质,结合不等式的放缩技巧,给出了判别非奇异H-矩阵新的充分条件,改进和推广了相关文献的结论.最后用数值例子说明了所给结果的优越性.  相似文献   

12.
α-双对角占优与H矩阵的判定   总被引:10,自引:0,他引:10  
设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有|aiiajj|≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.|aii|>(Πi∈νi∈νi∈ν  相似文献   

13.
设A=(aij)∈Cn×n,若对∨i∈N+{1,2,…,n}均有|ɑii|≥Σj≠i|ɑij|,则称A为对角占优矩阵.若存在正对角矩阵T,使得AT为对角占优矩阵,则称A为广义对角占优矩阵.论文通过构造正对角矩阵,在一定条件下得到了广义对角占优矩阵的几个判定条件和性质,改进和推广了一些已有的结果,并用数值例子说明了这些判定条件的有效性和实用性.  相似文献   

14.
本文首先讨论正规矩阵为亚正定的特征;然后论述了亚正定矩阵的一般积、Kronecker积以及Hadamard积仍为亚正定的条件。定义1 设A为实方阵,对任意非零向量x,有x Ax>0;称A为亚正定的。定义2 设A∈R~(n×n),A~ΓA=AA~Γ;则称A为正规矩阵。定义3 A、B为同阶实方阵,A可逆,方程|λA-B|=0的解为B相对A的特征根,显然它们是A和B确定的。定义4 A=(α)(?)×,B=(b_i)_m×m都是实阵;则m·n阵方阵(α_(ij)·B)_(m×m)为A与B的Kronecker积,记为AB。  相似文献   

15.
设矩阵A=(a(ij))∈C(n×n),如果对于D(A)的每个简单回路ν∈S(A)都有则称A为按回路行弱对角占优.研究了按回路弱对角占优阵的性质,证明了其零特征值的初等因子是单重的,并给出了零特征值个数的一个上界.  相似文献   

16.
利用矩阵的块对角占优和块广义严格对角占优的性质,给出了块严格α1-对角占优矩阵的等价表示,进而得到了块H-矩阵新的判定法则,即设A=(aij)∈Cn×n,M5=φ,若A满足‖Aii-1‖-1-Ri(A)/Ci(A)-Ri(A)+‖Ajj-1‖-1-Cj(A)/Rj(A)-Cj(A)≥1(i∈M1,j∈M2),则A为块H-矩阵。并应用于矩阵正稳定性的判定。  相似文献   

17.
非奇异H-矩阵的一个简捷判据   总被引:1,自引:0,他引:1  
设A=(aij)∈Cn×n,若存在α∈(0,1),使(A)i∈N,|aii|≥Rαi(A)S1-αi (A),则称A为Ostrowski对角占优矩阵.文章首先推广Ostrowski对角占优矩阵的概念到广义Ostrowski对角占优矩阵;最后得到了判别非奇异H-矩阵的一个判定方法,进一步丰富和完善了Ostrowski对角占优矩阵和非奇异H-矩阵的理论.  相似文献   

18.
首先定义了按回路弱不可约α_2-对角占优矩阵,给出了按回路弱不可约严格α_2-对角占优矩阵的一个等价表征,进而利用矩阵对角占优理论得到了非奇异H-矩阵的若干判定条件,进一步丰富和完善了按回路α-对角占优矩阵与非奇异H-矩阵的理论。  相似文献   

19.
本文用[·]表示区间量,区间矩阵(向量)是实的且为n阶(维)。其他符号含义见[1]。 设[A]=([αij])为区间阵且[αii]不含有0,[b]与[x]为区间向量,作[A]=[D]+[L]+[U],其中[D]=diag[A],[L]和[U]分别为严格下和严格上三角阵,则方程组[A][x]=[b]的SOR法迭代公式为:其中 定义 设   ,若δ>0,则称[A]为严格对角占优阵。 定理 设[A]为严格对角占优阵,令则当 α<ω<β时,(1)式对任意初值[x(0z)]都收敛于唯一解[x*],且[x*] 当ω=1时,(1)式即为Gauss-Seidel迭代。 推论  设 [A]为严格对角占优阵,则对任意初值[x(0)],Gauss-Seidel迭代收敛于唯…  相似文献   

20.
§1定义及记号我们用M_n(R)表示全体n 阶实方阵所成之集合.设A=(a_(ij)∈M_n(R),记号A≥0表示α_(ij)≥0,i,j=1,2,…,n,即A 为非负方阵.定义1 设P∈M_n(R)且P 的每一行和每一列都恰好有一个元素为一个正的实数而其余元素全为0,则称P 为一个n 阶正的广义置换矩阵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号