首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The basic characteristics, X-ray analysis and micromorphology of soil developed from the parent ruified soil had been probed, results showed that there were similarities among different types of the rubified soils. The soil clay (D<0.002 mm) contents (C c ) were relative higher as between 29.16% and 80.03%. In addition, organic matter contents were lower as between 2.2–6.6 g/kg. The clay minerals in the rubified soils had high content of 2:1 type swelling minerals, e.g., smectite and vermiculite, which were the basic causes of formation of soil cracks and crevices. Soil micromorphology characteristics showed that microcosmic crevices universally distributed within the tight and compact soil microstructure were the microcosmic characteristics of crevices formation. The soil cracks and crevices changed the erosion process. Obviously, well developed soil crevice carries a significant connection with strong soil erosion in Yuanmou, Yunnan province, China. The term “soil crevice erosion” was coincided with the viewpoint put forward that soil crevice erosion played a dominant role in regional and violent soil erosion in this area. Foundation item: Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-409) and the National Key Technology R&D Program of China (2006BAC01A11)  相似文献   

2.
0Introduction Changesinsoilstructureoftenaccompanychangesinmanagementpracticesandmayaffecttheeffectivenessofthesepractices.Parametersareneededto quantifythesechanges.Sizedistributionsofsoilparticleandmicroaggregatehavebeenfoundtobeagood indicatorofchanges…  相似文献   

3.
The soil water retention curve is an important hydraulic function for the study of flow transport processes in unsaturated soils. The objective of this study was to develop a soil water retention function using a generalized fractal approach. The model exhibits asymmetry between the solid phase and pore phase, which is in marked contrast to the symmetry between phases present in a conventional fractal model. The retention function includes 4 parameters: the saturated water content θs, the air entry value ha, the fractal dimension Df, and an empirical parameter β, characterizing the complicated soil pore structures. Sixty one data sets, covering a wide range of soil structure and textural properties, were used to evaluate the applicability of the proposed soil water retention function. The retention function is shown to be a general model, which incorporates several existing retention models. The values of β/θs and (θs-θr )/β were used as indexes to quantify the relationships between the proposed retention function and the existing retention models. The proposed function fits all the data very well, whereas other tested models only match about 16%-48% of the soil retention data.  相似文献   

4.
Water vapor, energy exchange, and CO2 flux were measured continuously from 2003 to 2005 using the eddy covariance technique in a paddy ecosystem in the subtropical region of China. The CO2 fluxes at nighttime during fallow periods (from middle October to late April) were used to analyze the dynamics of soil respiration and its relationship with soil temperature, and to simulate the annual dynamics of soil respiration in paddy ecosystems. The variation of soil respiration showed a clear seasonal pattern. The soil respiration rates at night during the fallow periods were 52--398 mg· m^-2· h^-1, and exponentially correlated (P〈0.001) with soil temperatures at different depths of soil (5, 10, and 20 cm), particularly the temperature measured at a depth of 5 cm. Based on the simulated exponential equations developed, annual average soil respiration rates and total soil respiration of paddy soil in the subtropical region of China were estimated to be 178.5--259.9 mg· m^-2· h^-1 and 1.56--2.28 kg· m^-2· a^-1, respectively. The simulation equations can be applied to evaluating soil respiration in paddy ecosystems during the rice-growing season.  相似文献   

5.
This study deals with δ13 C variation in karst soil system of Yaji Karst Experiment Site, Guilin, a typical region of humid subtropical karst formations. Samples of near ground air, plant tissue, soil and water (soil solution and karst spring) were respectively collected on site in different seasons during 1996–1999. Considerable variation of δ13 C values are not only found with different carbon pools of soil organic carbon, soil air CO2 and soil water HCO3, but also with the soil depths and with different seasons during a year. The °13 C values of CO2 both of near ground air and soil air are lower in July than those in April by 1‰–4‰ PDB. Our results indicate that the δ13 C values of carbon in the water and air are essentially dependent on interface carbon interaction of air-plant—soil-rock—water governed by soil organic carbon and soil CO2 in the system.  相似文献   

6.
The ATP in roots and xylem sap of two woody plant species, Platycladus orientalis and Acacia auriculiformis, subjected to rapid and slow soil drying has been determined employing firefly luciferase ATP assay method (sensitivity is at 10-12 mol ATP L-1). The ATP levels in the two species were 1.6 nmol·gDW-1 and 0.6 nmol·gDW-1 in roots, and 5.6 μmol·m-3 and 8 μmol ·m-3 in xylem sap, respectively. When plants of P. orientalis and A. auriculiformis were subjected to rapid soil drying, respectively, as soil water content (SWC) decreased from the normal level ( 0. 25 g ·gDW-1) to 0. 02 and 0. 06 g ·gDW-1, separately, plant water potential ( ) dropped to -4 and -3.2 MPa, differently, the ATP in roots decreased 99.7% and 42%, respectively . When the rapidly dried soil was watered for up to 6 d, SWC and were found to recover to their normal levels, but ATP content in roots of P. orientalis and A. auriculiformis recovered by 10% and 23%, respectively. When plants of P. orientalis and A. auriculiformis were subjected to slow soil drying, respectively, as SWC was found to decrease from the normal level to 0.1 and 0.13 g·gDW-1, separately, dropped to - 2.5 and - 2 MPa, differently, the ATP content in roots decreased 98% and 38%, respectively. When the slowly dried soil was watered for up to 8 d, ATP levels in roots of P. orientalis and A, auriculiformis recovered by 30% and 24%, respectively. However, ATP concentrations in xylem sap were not directly influenced by either SWC or . The plot dots of xylem sap ATP concentration versus root ATP content were found to be distributed diagonally. It is concluded that ATP in roots is more sensitive in response to SWC changes than that to and root-sourced ATP is a source of that in xylem sap. When plants are subjected to slow soil drying, the ATP levels in both root and xylem sap are higher than that to rapid soil drying.  相似文献   

7.
This study is aimed to investigate and analyze the vegetation landscape around Rivers of Hou-lung, Fa-tz, Da-li, Ching-shuei and Gau- ping, and to select the suitable plant species that could be applied for the area of riverbank ecological engineering in Taiwan. Studying the vegetation established the key point and procedure of ecological engineering in the riverside and revetment, to compile and edit the dominant plants' types, life form, propagating method, root systems' characteristics and functions for soil conservation. This research choses three dominant plants for roots strength test. The fitting models of plants pulling resistance(Rp, kg) between plant height (H, cm), diameter near ground (Dn, mm), diameter above ground 100 mm (Da, mm), The research finished the relative abundant, types and cluster analysis of riverbank dominant plants that generalize vegetative distribution and ecological restoration for different river types to apply and manage in Taiwan.  相似文献   

8.
We studied in the laboratory the effects of acetylene (C2H2) concentrations on the accumulation and consumption of ethylene and methane in a temperate pine forest soil, and in situ ethylene and methane production and flush effects of nitrogen sources on both productions in the pine forest stand (Pinus sylvestris L.). The addition of C2H2 at concentrations more than 50 Pa C2H2 in the headspace caused a more than 95% reduction in rates of ethylene and methane consumption in forest soil compared to those with no C2H2. Furthermore, addition of acetylene within a range of 50 to 10, 000 Pa C2H2 induced a similar rate of methane accumulation in forest soil. Hence, it can be concluded that presence of more than 50 Pa C2H2 in the headspace is an effective method to measure methane production in forest soil. The addition of C2H2 at concentrations more than 50 Pa C2H2 induced an increasing concentration of ethylene in the headspace (P≤0.05), indicating the reduction of acetylene to ethylene in forest soil. Using inhibition of 0.5 kPa C2H2 in combination with 5 kPa carbon monoxide that inhibits the reduction of acetylene in a short term, it was observed that there was a larger in situ methane production rate (218±26 μg C m^-2 h^-1(μg C per square meter per hour, the same below)) than in situ ethylene production rate (92±6 μg C m^-2 h^-1) in the pine forest soil. The addition of nitrogen sources such as urea, urea plus a nitrification inhibitor dicyandiamide, and potassium nitrate, could induce a 5-fold greater increase in rates of in situ ethylene and methane production compared to those in the control, particularly in the latter (P≤0.05). The results can promote in situ measurement of ethylene and methane production in forest soils at different sites.  相似文献   

9.
A study on the distribution characteristics of soil organic carbon (SOC) in the alpine meadow in the Eastern Qinghai-Tibet Plateau has been carried out. The results indicate that the content of soil organic carbon (C SOC) in the topsoil of terrace meadow (TM) ((67.16 ± 1.02) g·kg−1) is more than that in the soil of upland meadow (UM) ((63.42 ± 0.65) g·kg−1), while the C SOC in upland shrubland (US) ((67.49 ± 0.83) g·kg−1) is the most abundant in the scoreh stage (September). From May to September, the C SOC in the topsoil of UM and US tends to descend, but that of TM tends to ascend. As for the distribution of the C SOC and the density of SOC in the soil in the three sample areas, the data show that the deeper the soil, the lesser the content and density of SOC. The C SOC in US is higher than that in TM and UM; the C SOC in UM is the lowest at 0–10 cm soil depth. The density of SOC in US is always the lowest among UM, TM, and US at 0–40 cm depth, which shows that the storage of carbon in UM is more than that in US in the same range; the carbon pool capacity in UM is higher than that in US in the same range. Biography: ZHANG Wei (1979–), male, Lecturer, research direction: ecology of environment.  相似文献   

10.
Two woody plants, Platycladus orientalise (tolerant to drought) and Acacia auriculi-formis (sensitive to drought), have been subjected to rapid and slow soil drying. ABA levels in their roots and xylem sap have been determined using radioimmunoassay (RIA, sensitivity is 0.4 pmol per assay vial) with a monoclonal antibody against ( + )-ABA. ABA contents of P. orientalise and A. auriculiformis growing in well watered soil are 0.3 and 2.5 nmol·gDW-1 in roots and 1.6 and 0.4 μmol in xylem saps, respectively. A rapid soil drying has been applied to these two plants with soil water content (SWC) being reduced to 0.02 and 0.06 g·gDW-1 respectively. Under such treatment, ABA was increased by 22 times and 2 times in roots and by 7 times and 34 times in xylem saps respectively for P. orientalise and A. auriculiformis. After rewatering for 6 d, ABA in roots and xylem sap of both species returned to control levels. When a slow soil drying was applied, SWC was reduced to 0.1 and 0.13 g·gDW-1 respectively for P. orientalise and A. auriculiformis. ABA was increased by 5 times and 1.6 times in roots and by 6 times and 19 times in xylem saps respectively for these two plants. ABA in roots and xylem saps decreased to near control levels 8 d after watering. Plant leaf water potentials of both plants hardly changed at times when root and xylem ABA showed substantial increase in response to soil drying. It is concluded that ABA levels in the roots and xylem saps of P. orientalise and A. auriculiformis are more sensitively regulated than leaf water potential in response to soil drying and can act as a chemical signal in root-shoot communications of the drought stress.  相似文献   

11.
Distribution characteristics of soil organic matter(SOM) and total nitrogen(TN) were studied in different plant communities of the Yajiageng vertical belt in Gongga Mountain around the Dadu River banks. The results show: (1) the contents of SOM and TN of the plant communities gradually decreased with the following order: subalpine coniferous forest (3 027 m), subalpine meadow (3 873 m), coniferous broadleaved mixed forest(2 737 m), subalpine shrub(3 565 m) and treeline(3 564 m). (2) With soil profile depth increasing, the contents of SOM and TN gradually decreased. For different vegetation types, the contents of SOM and TN in sub-alpine coniferous forest were higher than that of other vegetational types. (3)The ratio of the content of carbon to the content of total nitrogen (Cc/CTN)WaS 13.5-27.6, which was relatively lower than the appropriate Cc/CTN of 25-30, and indicated that the soil in favor of the organic matter decomposed and nutrients released. Cc/CTN in the soil had no correlation with sea level altitude. However, its distribution in the soil x, aried with different vegetation types. (4) Nitrogen in SOM existed mainly in the form of organic nitrogen, and Cc/CTN in the soil was not obvious correlated with SOM and TN.  相似文献   

12.
In the global carbon cycle studies, terrestrial ecosys- tem has become one of the greatest uncertain ecosystems in the current carbon cycle studies owing to the complex- ity of its underlying surface and intense disturbance of anthropogenic activities[1], hence depth studies of it serveas a key in seeking for the “missing carbon sinks” of at-mosphere. In the terrestrial ecosystem, soil organic carbonreservoir is an important component of carbon reservoir inthe system, its carbon …  相似文献   

13.
The amount and biodegradability of dissolved organic carbon (DOC) in forest floors can contribute to carbon sequestration in soils and the release of CO 2-C from soil to the atmosphere.There is only limited knowledge about the biodegradation of DOC in soil extracts and leachates due to the limitations inherent in degradation experiments.Differences in the biodegradation of DOC were studied in forest soil extracts using cold and hot water and 4 mmol/L CaCl 2 solution and in soil leachates sampled under different conditions over a wide range of DOC concentrations.From these results,we developed a simple and rapid method for determining the biodegradable organic C in forest floors.The hot water extracts and CaCl 2 extracts after CH 3 Cl fumigation contained higher concentrations of biodegradable organic C than the cold water extracts and CaCl 2 extracts before fumigation,with rapid DOC degradation occurring 24-48 h after incubation with an inoculum,followed by slow DOC degradation till 120-168 h into the incubation.During a 7-d incubation with an inoculum,the variation in DOC degradation in the different soil extracts was consistent with the change in special UV absorbance at 254 nm.Relatively higher levels of biodegradable organic C were detected in soil leachates from the forest canopy than in forest gaps between April and October 2008 (P <0.05).Relatively lower concentrations of DOC and biodegradable organic C were observed in soil leachates from N-fertilized plots during the growing season compared with the control,with the exception of the plot treated with KNO 3 at a rate of 45 kg N ha 1 a 1.Around 77.4% to 96.3% of the variability in the biodegradable organic C concentrations in the forest floors could be accounted for by the initial DOC concentration and UV absorbance at 254 nm.Compared with the conventional inoculum incubation method,the method of analyzing UV absorbance at 254 nm is less time consuming and requires a much smaller sample volume.The results suggest that the regression models obtained using the initial DOC concentration and UV absorbance can provide a rapid,simple and reliable method for determining the biodegradable organic C content,especially in field studies involving relatively large numbers of samples.  相似文献   

14.
Based on continuous three-year measurements (from 2004 to 2007) of eddy covariance and related environmental factors, envi-ronmental controls on variation in soil respiration (Rs) during non-growing season were explored in a maize agroecosystem in Northeast China. Our results indicated that during non-growing seasons, daily Rs was 1.08–4.08 g CO2 m–2 d–1, and the lowest occurred in late November. The average Rs of non-growing season was 456.06 ± 20.01 g CO2 m–2, accounting for 11% of the gross primary production (GPP) of the growing season. Additionally, at monthly scale, the lowest value of Rs appeared in January or February. From the beginning to the end of non-growing season, daily Rs tended to decrease first, and then increase to the highest. There was a significant quadratic curve relationship between Rs and soil temperature at 10 cm depth when soil temperature was more than 0°C (P<0.001), with the explaining ratio of 38%–70%. When soil water content was more than 0.1 m3 m–3, soil moisture at 10 cm depth was significantly parabolically correlated with Rs (P<0.001), explaining the rate of 18%–60%. Based on all the data of soil temperature of more than 0°C, a better model for Rs was established by coupling soil temperature and moisture, which could explain the rate of up to 53%–79%. Meanwhile, the standard error of regression estimation between the values of prediction and observation for Rs could reach 2.7%–11.8%. Rs in non-growing season can account for 22.4% of Rs in growing season, indicating that it plays a critical role in assessing the carbon budget in maize agroecosystem, Northeast China.  相似文献   

15.
0Introduction Near infrared(NIR)techniquesarebasedonsensitive,quantitativemeasurementsoffunctionalcontrastbe tweenhealthyanddiseasedtissue.Recently,researchersshowgreatinterestinmeasuringfunctionalpropertiesofbreasttis suesuchashemoglobinconcentrationoroxygensaturationbyNIRspectroscopyandNIRimaging[1,2].NIRlightcanpene trateseveralcentimetersintotissuebeforeitisattenuatedbe lowdetection.ThemainintrinsicmechanismsofNIRlightat tenuationintissuearethescatteringduetoindexofrefractionvariatio…  相似文献   

16.
According to systemically monitoring results of oxygen (hydrogen) isotope compositions of precipitation, soil waters, soil CO2, cave drip waters and their corresponding speleothems in Liangfeng Cave (LFC) in Guizhou Province, Southwest China, it is found that local precipitation is the main source of soil waters and drip waters, and that the amplitudes of those δ18O values of three waters (precipitation, soil water and drip water) decrease in turn in the observed year, which are 0‰ to -10‰, -2‰ to -9‰ and -6‰ to -8‰, respectively. Moreover, the δ18O values for three waters show a roughly simultaneous variation, namely, that those values are lighter in the rainy seasons, weightier in the dry seasons, and that the average δ18O value of drip waters is about 0.3‰ weightier than that of precipitation, which is modified by surface evaporation processes. We also find that oxygen isotope equilibrium is reached or neared in the formation processes of speleothems in LFC system, and that it is feasible to reconstruct paleotemperature and paleoprecipitation by using δ18O values of speleothems. However, it should be noted that surface evaporation would affect the oxygen isotope values in the study area.  相似文献   

17.
为了解不同林龄马尾松Pinus massoniana人工林土壤碳储量的动态变化,选取广西横县镇龙林场不同林龄(幼龄林、中龄林、成熟林、过熟林)的马尾松人工林为研究对象,对林地土壤有机碳含量及土壤碳储量的变化特征进行研究,并探讨其影响因素。研究表明,随着林龄递增,各土层土壤有机碳含量及土壤碳储量总体表现为增加趋势,且不同林龄的同一土层之间均差异显著。不同林龄0—60 cm土层土壤有机碳含量表现为过熟林(16.82±0.23)g/kg > 成熟林(13.47±0.14)g/kg > 中龄林(10.91±0.38)g/kg > 幼龄林(10.74±0.14)g/kg,且差异显著(P<0.05)。不同林龄0—60 cm土层土壤碳储量表现为过熟林(104.92±18.08)t/hm2>成熟林(100.52±1.18)t/hm2 > 中龄林(80.25±5.34)t/hm2 > 幼龄林(80.23±4.54)t/hm2,且差异显著(P<0.05)。各林龄土壤有机碳含量、土壤碳储量主要集中在0—20 cm土层,并随土层深度的增加而递减,表现为土壤碳表聚现象,表层(0—20 cm)土壤碳储量所占比例均明显高于其他土层,表明不同林龄主要影响马尾松人工林土壤表层的碳含量;不同林龄土壤有机碳含量、土壤碳储量与乔木、灌木层Shannon-Wiener指数、物种丰富度、凋落物层现存量、总孔隙度、土壤含水量、土壤pH值均无显著相关关系(P>0.05),与根系生物量呈极显著正相关关系(P<0.01),与土壤容重呈极显著负相关关系(P<0.01);群落总生物量、地上部分生物量均与表层(0-20 cm)土壤有机碳含量和土壤碳储量呈极显著正相关关系(P<0.01),与20-40,40-60 cm土层土壤有机碳含量呈显著正相关关系(P<0.05),而与后两个土层的土壤碳储量均无显著相关。该结果为研究土壤碳储量动态变化提供科学依据,有利于实现尾松人工林多目标可持续经营。  相似文献   

18.
This paper presents the logic relationship between rural settlement reconstruction and soil conservation in the Upper Yangtze River. Firstly, by introducing the concepts of "flow" and "intercepted flow", we probe into the dynamic mechanism on interaction between ecological and environmental system, and then point out that the "intercepting sites" are physical conditions for establishment of human settlements in mountains. Secondly, by using ecological theories, "flow", "source", and "sink", material cycle and energy flow in mountains have been discussed. Thirdly, according to dissipative structure theory and thermodynamic laws, a hypothesis has been proposed that "entropy flow" is a dynamic force for settlement evolution. Finally, it is argued that a project for soil conservation is set to control and utilize flows so rural settlements can be supported and farmers' life improved.  相似文献   

19.
Rising atmospheric CO2 and temperature are altering ecosystem carbon cycling. Grasslands play an important role in regional climate change and global carbon cycle. Below-ground processes play a key role in the grassland carbon cycle because they regulate …  相似文献   

20.
微塑料是一类土壤中广泛存在的新兴污染物,其对土壤磷吸附的影响尚不明确。文中分析了0.1%~10%含量微塑料对土壤磷吸附特性的影响及机制。结果表明,微塑料会使得吸附第一阶段液膜扩散阶段速率显著提升(p<0.05)。与纯土壤(qe=6.456 mg/g)相比,含量1%以下的微塑料显著降低了土壤磷吸附容量(p<0.05),但5%以上的微塑料显著提升了土壤磷吸附容量(p<0.05)。同等含量下,微塑料粒径越小,微塑料-土壤体系的磷吸附量越大。微塑料可与磷竞争吸附位点,降低了微塑料-土壤体系对磷的吸附,但微塑料也可直接吸附磷,故当微塑料为5%及以上时,微塑料-土壤体系对磷的吸附量升高。因此,土壤微塑料污染可显著改变土壤对磷的吸附特性,且与微塑料的含量和粒径等因素密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号