首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
真空碳热还原过程中二氧化硅的挥发行为   总被引:1,自引:0,他引:1  
为了解在真空碳热还原过程中SiO2的还原特性以及还原过程中的主要影响因素,对二氧化硅的还原过程进行热力学分析,得出化学反应自由能和临界温度。在系统压力为2~200 Pa条件下,以分析纯SiO2和Fe2O3为原料,采用XRD,SEM,EDS和化学成分分析等手段,研究Fe/Si摩尔比、配碳量、反应时间、还原剂粒度和升温速率对硅的挥发率和还原反应速率的影响。实验结果表明:在100 Pa条件下,SiO2的临界反应温度为1 330~1 427 K。SiO2发生气化反应生成的SiO气体挥发至石墨冷凝系统歧化生成Si和SiO2,造成硅的损失,且有部分SiO气体和石墨反应生成SiC;增大Fe/Si摩尔比和配碳量以及减小还原剂粒度均降低了硅的挥发率,提高了SiO2还原反应速率;延长反应时间和提高升温速率增加了硅的挥发率。  相似文献   

2.
采用FactSage7.2软件模拟研究真空碳热还原高炉、电炉和转底炉粉尘在不同温度、配碳量条件下的热力学行为,分析了不同条件下锌的挥发率.结果表明:以高炉粉尘为实验原料,升高实验温度和增加配碳量有利于粉尘的还原和锌的挥发,在温度为700℃、配碳量为14%条件下锌被完全还原并挥发;以电炉粉尘为实验原料,升高温度和增加配碳...  相似文献   

3.
SiO2还原对高炉风口前理论燃烧温度的影响   总被引:1,自引:0,他引:1  
风口前理论燃烧温度是衡量炉缸热状态的重要参数之一,而SiO2在风口前被碳还原对其产生的影响一直被忽略.通过实验研究了高炉风口前不同位置的试样,得到进入风口回旋区焦炭的温度和不同位置试样渣中SiO2的含量,从而确定出在风口回旋区SiO2的还原率,并建立了考虑SiO2还原情况下理论燃烧温度的计算公式,最后在富氧喷煤的条件下,分析和讨论了煤粉中灰分变化对理论燃烧温度的影响因素.  相似文献   

4.
根据热力学原理,计算并分析了含锌冶金粉尘中的重要成分ZnFe2 O4在CO- CO2气体还原过程中的热力学行为. ZnFe2 O4的气体还原遵循逐级还原规律,且ZnFe2 O4很容易被CO还原到ZnO和Fe3 O4.较高温度条件下,ZnO的气体还原易于FeO的还原.随着反应温度升高,锌完全反应和挥发所需要的CO含量不断降低,当反应温度从1100 K升高到1400 K时所需的CO体积分数由0.4降低到0.01以下.要达到还原分离金属锌的目的,不必将铁氧化物还原到金属铁,而只需将铁氧化物还原到Fe3 O4或FeO,同时满足锌的还原条件即可.在高炉炉身中上部,由于发生锌的还原反应和内部循环,给高炉生产带来危害,因此应减少和控制高炉的锌负荷.  相似文献   

5.
熔融还原过程硅还原氧化行为   总被引:1,自引:0,他引:1  
试验研究熔融还原过程条件下SiO2还原氧化行为及对过程的影响。研究表明:喷吹煤粉燃烧温度、煤的灰份组成影响SiO2还原过程。通过适当选择煤种和控制氧煤喷枪的喷吹位置,可以减轻SiO2还原挥发过程的不利影响。  相似文献   

6.
以云南元江红土镍矿为研究对象,采用XRD,EM-EDS和化学成分分析等手段,研究红土镍矿真空碳热还原反应的热力学、还原产物的物相转变和金属镁的挥发冷凝机理,探讨红土镍矿真空碳热还原过程中镁的行为.实验结果表明:真空中氧化镁的还原是固体碳直接还原的固-固反应,临界反应温度为1 476 K,生成的金属镁极易挥发,在冷凝系统凝华收集;还原产物主要有SiC,Fe-Si合金,Mg2SiO4,Mg和SiO气体;SiO在冷凝系统生成Si和SiO2;反应温度的升高、还原煤用量的增加和反应时间的延长,镁的还原率都显著增大;不同种类的添加剂催化效果不同,CaO和CaF2的催化效果较好:在温度较低的冷凝系统,Mg容易与CO,O2和Si发生反应生成MgO和Mg2Si,影响金属镁的纯度.  相似文献   

7.
高炉内硅还原反应未达到平衡。研究表明,温度、焦炭中 SiO_2 量、炉渣碱度及其 MgO 含量、还原时间、接触面积是影响硅还原的重要因素。为获得低硅生铁,要控制炉内温度,缩小硅还原区,减少焦炭带入 SiO_2 量,适当提高炉渣碱度和 MgO含量。  相似文献   

8.
从理论上分析了降低铁水中硅含量的三个途径:控制硅源;降低滴落带的高度;增加炉缸渣中的氧化性.在实验室进行了降低铁水中硅含量的实验,得到了铁水中硅含量的影响因素:提高二元碱度有利于降硅;增加渣中氧化物可降低SiO2的活度有利于降硅;Al2O3和SiO2不利于降硅;冶炼时焦炭中SiO2的挥发量随温度的升高而增多,使铁水中硅含量增加;随着滴落带高度的增加,铁水中硅含量不断增加.根据实验室研究针对唐山建龙公司高炉特点提出降低铁水中硅含量的措施,降硅效果明显,铁水中硅的质量分数由原来的0.55%左右降到了0.40%左右.  相似文献   

9.
实验室和生产高炉的研究发现,铁矿石的还原过程明显存在两个速度高峰,它把高炉内部分为上部高级氧化铁还原区、中部还原反应迟钝区和下部浮士体还原区等三部分。其中浮士体还原区还包括自热储备区下端到矿石熔滴以前(约950℃—1400℃甚至更高)的混合还原区与滴下带内的液态直接还原区。由固体浮士体间接还原和焦炭溶损反应组成的混合还原区是高炉内能量利用的关键区域,只有改善矿石还原性,降低焦炭反应性以增加该区内的间接还原量,才能降低高炉燃耗。上部高级氧化铁的间接还原虽可提高煤气利用率,但不能降低燃料比。位于热储备区的还原迟钝区是浮士体的潜在还原区。喷吹含氢高的辅助燃料、改善矿石还原性、提高鼓风温度和含氧量等可以挖掘该区的还原潜力,进一步降低高炉的燃科消耗量。  相似文献   

10.
直接还原回收有价金属处理不锈钢冶炼粉尘过程中,锌在冶炼系统中不断循环积聚,可从收尘系统中分离出高含锌粉尘,然后采用CO在等离子炉中选择性还原回收锌.作者研究了反应温度、粉尘给料速度、粉尘给料量与还原剂CO量比等对锌还原挥发率的影响,建立了还原过程的数学模型.研究结果表明还原温度对粉尘中锌的还原影响很大,升高温度有利于锌的还原,但当温度超过1 228.2 ℃时,进一步升高温度不会明显提高锌的还原率,高的锌还原率的获得还应通过降低给料速度和控制给料比来实现;在1 400 ℃,给料速度为50 g/min,给料比为4.5∶1时,锌还原率可达99.98%;ZnFe2O4在高温下可分解,在还原过程进行前将粉尘中ZnFe2O4分解可显著提高锌的还原挥发率.  相似文献   

11.
运用FactSage软件对攀枝花钛精矿碳热还原后在真空条件下的分离行为进行热力学计算。结果表明:在配碳量12%(质量分数),压力100 Pa,温度高于1 300℃时,气相中开始产生Mg,SiO和Mn蒸气;当温度为1 750℃时,整个体系内各物质含量趋于稳定值,钛渣品位(折算TiO2)可达94%。在同样的配碳量下,温度为1 550℃,压力低于1 000 Pa时,气相中也产生Mg,SiO和Mn蒸气。在碳管炉进行了预还原后钛精矿的真空冶炼实验,结果表明:金属铁已明显挥发出来;渣的主要物相为Ti2O3,TiO和少量的金属铁,钛渣品位高达93.35%(质量分数),CaO含量小于1.05%(质量分数),MgO含量小于0.42%(质量分数)。  相似文献   

12.
从理论上分析了燃烧过程中脱挥发分引起的煤颗粒破碎机理,并通过模型预测了脱挥发分过程中球型颗粒内部的压力和应力分布,研究了颗粒大小、温度等几个因素对脱挥发分引起的破碎的影响,研究表明,煤颗粒的挥发分含量越高、炉膛内的温度越高,颗粒越容易破碎;颗粒越小,发生破碎需要的时问越短,但是极小的颗粒可能不会发生脱挥发分破碎,这和颗粒内部的对流孔径有关;此外,挥发分含量极小的颗粒,可能不会发生脱挥发分破碎。  相似文献   

13.
采用热天平减重法在氧气高炉气氛下进行烧结矿的还原实验,考察还原度RI和还原速率RI′的变化情况,并进行烧结矿还原动力学分析。结果表明:在氧气高炉气氛900 ℃下还原时,烧结矿的还原度RI高达98.2%;还原终了时间随还原温度的提高而缩短,由900 ℃时的117 min缩短到1 100 ℃时的63 min;氧气高炉气氛下,烧结矿还原的开始阶段由界面化学反应控速,还原约20 min后转变为由界面化学反应和内扩散混合控速;氧气高炉气氛900~1100 ℃时,烧结矿还原反应开始阶段的表观活化能为38.30 kJ/mol。  相似文献   

14.
通过测量铁矿-煤球团在空气中还原时料层温度上升规律和气体成分变化情况,得出了球团被加热到挥发分开始激烈析出温度时,挥发分开始燃烧,放出 的热是将球团加热到碳的直接还原开始激烈进行温度时,碳的还原产生的CO气体开始燃烧, 提供球团还原耗热.  相似文献   

15.
通过测量铁矿一煤球团在空气中还原时料层温度上升规律和气体成分变化情况,得出了球团被加热到挥发分开始激烈析出温度时.挥发分开始燃烧,放出的热是将球团加热到碳的直接还原开始激烈进行温度时,碳的还原产生的CO气体开始燃烧,提供球团还原耗热.  相似文献   

16.
不同硅源中的SiO_2 在实验条件下的还原都未达到平衡。焦炭、焦炭灰、硅石中的SiO_2 比炉渣中的容易还原得多。炉渣和焦炭都是生铁的重要硅源。如使用硅石使生铁增硅,改善它与还原剂的接触条件是提高硅还原率的重要因素。实验还证实了高炉内硅还原的途径是:SiO_2→SiO→〔Si〕。  相似文献   

17.
在高炉热风炉中用高炉煤气、垃圾制燃气、低热值煤气加热循环还原气,或用红焦、热DRI(直接还原铁)等热量加热循环还原气至1100℃,输入还原竖炉加热铁矿煤球团,生产DRI,从炉顶气中回收硫和CO2,炉顶气净化后作为还原气循环使用.球团内煤干馏形成的半焦、焦炭起到了与高炉内焦炭不同的骨架作用.利用还原反应后气体余热来预热和干馏球团,利用铁精矿粉和煤粉的高比表面积,利用煤的干馏气化促进低温下碳的一次气化反应和直接还原反应,使DRI煤耗进一步降低.设炉顶气温度降到150℃,配煤218kg,高炉煤气消耗约947m3时,工艺能耗约333kg/t煤.比高炉工艺节能约52%,减排CO2约83%.比MIDREX节能约84kg标准煤.该工艺简称为DRI-NHQ.  相似文献   

18.
TiO2碳热还原与高炉钛渣提取碳氮化钛分析   总被引:4,自引:0,他引:4  
总结TiO2的碳热还原法制取碳(氮)化钛的研究成果,并对高炉钛渣中钙钛矿的碳热还原进行了热力学分析。研究结果表明,TiO2的碳热还原可分为三个阶段:TiO2→TinO2n-1,该阶段还原较快;TinO2n-1→TiCxNzOy,该阶段碳的气化反应起中心作用;TiCxNzOy→Ti(C,N)是一个较慢的扩散过程。TiO2的碳热还原氮化反应中难以出现TiO相;N2气的引入,可降低还原温度。通过调整高炉钛渣组成(包括碱度),使之生成CaO.Al2O3.2SiO2,更有利于碳(氮)化钛的生成。  相似文献   

19.
采用高炉多区域约束数学模型对典型氧气高炉流程进行模拟计算,确定了其在不同位置处的煤气成分,并结合传统高炉的升温制度,采用程序还原实验装置对含铁炉料在氧气高炉和传统高炉中的还原历程进行研究。结果表明,氧气高炉条件下,烧结矿和球团矿的还原开始温度较传统高炉分别降低60℃和150℃;当温度达到1 100℃时,氧气高炉条件下,烧结矿和球团矿的还原度(RI)基本均达到100%,而传统高炉下其还原度(1 RI)分别为94%和83.1%。另外,经对反应后炉料的化学分析得出,氧气高炉条件下烧结矿和球团矿中的含碳量分别约为传统高炉条件下的10倍和2.5倍。  相似文献   

20.
用含铁物料和煤粉直接制备金属铁粒的新工艺研究   总被引:1,自引:0,他引:1  
介绍采用碱性内配煤含铁团块(或球团)高温直接还原生产金属铁粒的方法(Wcomet法),研究该方法中影响铁-渣分离及金属铁收得率的主要因素.当内配碳比(C/O原子比)大于1.0、渣相碱度(R)大于1.8、还原温度高于1300 ℃时,被还原出来的金属铁通过扩散聚集长大成粒,同时,团块中的CaO与脉石中的 SiO2反应生成2CaO*SiO2.还原产物在冷却过程中因2CaO*SiO2相变发生自然粉化,通过筛分可得到尺寸为5~20mm的金属铁粒.采用该方法可以有效回收硫酸渣和转炉污泥中的铁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号