首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
A Bachmann  M Schneider  E Theilenberg  F Grawe  E Knust 《Nature》2001,414(6864):638-643
The polarized architecture of epithelial cells depends on the highly stereotypic distribution of cellular junctions and other membrane-associated protein complexes. In epithelial cells of the Drosophila embryo, three distinct domains subdivide the lateral plasma membrane. The most apical one comprises the subapical complex (SAC). It is followed by the zonula adherens (ZA) and, further basally, by the septate junction. A core component of the SAC is the transmembrane protein Crumbs, the cytoplasmic domain of which recruits the PDZ-protein Discs Lost into the complex. Cells lacking crumbs or the functionally related gene stardust fail to organize a continuous ZA and to maintain cell polarity. Here we show that stardust provides an essential component of the SAC. Stardust proteins colocalize with Crumbs and bind to the carboxy-terminal amino acids of its cytoplasmic tail. We introduce two different Stardust proteins here: one MAGUK protein, characterized by a PDZ domain, an SH3 domain and a guanylate kinase domain; and a second isoform comprising only the guanylate kinase domain. The Stardust proteins represent versatile candidates as structural and possibly regulatory constituents of the SAC, a crucial element in the control of epithelial cell polarity.  相似文献   

2.
Bilder D  Perrimon N 《Nature》2000,403(6770):676-680
The generation of membrane domains with distinct protein constituents is a hallmark of cell polarization. In epithelia, segregation of membrane proteins into apical and basolateral compartments is critical for cell morphology, tissue physiology and cell signalling. Drosophila proteins that confer apical membrane identity have been found, but the mechanisms that restrict these determinants to the apical cell surface are unknown. Here we show that a laterally localized protein is required for the apical confinement of polarity determinants. Mutations in Drosophila scribble (scrib), which encodes a multi-PDZ (PSD-95, Discs-large and ZO-1) and leucine-rich-repeat protein, cause aberrant cell shapes and loss of the monolayer organization of embryonic epithelia. Scrib is localized to the epithelial septate junction, the analogue of the vertebrate tight junction, at the boundary of the apical and basolateral cell surfaces. Loss of scrib function results in the misdistribution of apical proteins and adherens junctions to the basolateral cell surface, but basolateral protein localization remains intact. These phenotypes can be accounted for by mislocalization of the apical determinant Crumbs. Our results show that the lateral domain of epithelia, particularly the septate junction, functions in restricting apical membrane identity and correctly placing adherens junctions.  相似文献   

3.
Izaddoost S  Nam SC  Bhat MA  Bellen HJ  Choi KW 《Nature》2002,416(6877):178-183
Drosophila Crumbs (Crb) is required for apical-basal polarity and is an apical determinant in embryonic epithelia. Here, we describe properties of Crb that control the position and integrity of the photoreceptor adherens junction and photosensitive organ, or rhabdomere. In contrast to normal photoreceptor adherens junctions and rhabdomeres, which span the depth of the retina, adherens junctions and rhabdomeres of Crb-deficient photoreceptors initially accumulate at the top of the retina and fail to maintain their integrity as they stretch to the retinal floor. We show that Crb controls localization of the adherens junction through its intracellular domain containing a putative binding site for a protein 4.1 superfamily protein (FERM). Although loss of Crb or overexpression of the FERM binding domain causes mislocalization of adherens junctions, they do not result in a significant loss of photoreceptor polarity. Mutations in CRB1, a human homologue of crb, are associated with photoreceptor degeneration in retinitis pigmentosa 12 (RP12) and Leber congenital amaurosis (LCA). The intracellular domain of CRB1 behaves similarly to its Drosophila counterpart when overexpressed in the fly eye. Our studies may provide clues for mechanisms of photoreceptor degeneration in RP12 and LCA.  相似文献   

4.
Tawk M  Araya C  Lyons DA  Reugels AM  Girdler GC  Bayley PR  Hyde DR  Tada M  Clarke JD 《Nature》2007,446(7137):797-800
The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.  相似文献   

5.
The apical transmembrane protein Crumbs is a central regulator of epithelial apical-basal polarity in Drosophila. Loss-of-function mutations in the human homologue of Crumbs, CRB1 (RP12), cause recessive retinal dystrophies, including retinitis pigmentosa. Here we show that Crumbs and CRB1 localize to corresponding subdomains of the photoreceptor apical plasma membrane: the stalk of the Drosophila photoreceptor and the inner segment of mammalian photoreceptors. These subdomains support the morphogenesis and orientation of the photosensitive membrane organelles: rhabdomeres and outer segments, respectively. Drosophila Crumbs is required to maintain zonula adherens integrity during the rapid apical membrane expansion that builds the rhabdomere. Crumbs also regulates stalk development by stabilizing the membrane-associated spectrin cytoskeleton, a function mechanistically distinct from its role in epithelial apical-basal polarity. We propose that Crumbs is a central component of a molecular scaffold that controls zonula adherens assembly and defines the stalk as an apical membrane subdomain. Defects in such scaffolds may contribute to human CRB1-related retinal dystrophies.  相似文献   

6.
Mitchell B  Jacobs R  Li J  Chien S  Kintner C 《Nature》2007,447(7140):97-101
Ciliated epithelia produce fluid flow in many organ systems, ranging from the respiratory tract where it clears mucus to the ventricles of the brain where it transports cerebrospinal fluid. Human diseases that disable ciliary flow, such as primary ciliary dyskinesia, can compromise organ function or the ability to resist pathogens, resulting in recurring respiratory infections, otitis, hydrocephaly and infertility. To create a ciliary flow, the cilia within each cell need to be polarized coordinately along the planar axis of the epithelium, but how polarity is established in any ciliated epithelia is not known. Here we analyse the developmental mechanisms that polarize cilia, using the ciliated cells in the developing Xenopus larval skin as a model system. We show that cilia acquire polarity through a sequence of events, beginning with a polar bias set by tissue patterning, followed by a refinement phase. Our results indicate that during refinement, fluid flow is both necessary and sufficient in determining cilia polarity. These findings reveal a novel mechanism in which tissue patterning coupled with fluid flow act in a positive feedback loop to direct the planar polarity of cilia.  相似文献   

7.
C R Vinson  S Conover  P N Adler 《Nature》1989,338(6212):263-264
The function of the frizzled (fz) locus in Drosophilia melanogaster is required to coordinate the cytoskeletons of epidermal cells to produce a parallel array of cuticular hairs and bristles (for example on the wild-type wing all hairs point towards the distal tip). In fz mutants it is not the structure of individual hairs and bristles that is altered, but their orientation with respect to their neighbours and the organism as a whole. Mitotic clone analysis indicates that fz has two functions in the developing wing. It is required for the proximal-distal transmission of an intercellular polarity signal, a process that is expected to be at least partly extracellular. It is also required for cells to respond to the polarity signal, which is expected to be a cytoplasmic function. The fz locus could encode either one bifunctional or two single-function proteins. We report here that, in pupae, fz produces a messenger RNA that encodes a protein with seven putative transmembrane domains. Thus, the Fz protein should contain both extracellular and cytoplasmic domains, which could function in the transmission and interpretation of polarity information, respectively. This is the first reported sequence for the protein product of a tissue polarity gene.  相似文献   

8.
Ninomiya H  Elinson RP  Winklbauer R 《Nature》2004,430(6997):364-367
Remodelling its shape, or morphogenesis, is a fundamental property of living tissue. It underlies much of embryonic development and numerous pathologies. Convergent extension (CE) of the axial mesoderm of vertebrates is an intensively studied model for morphogenetic processes that rely on cell rearrangement. It involves the intercalation of polarized cells perpendicular to the antero-posterior (AP) axis, which narrows and lengthens the tissue. Several genes have been identified that regulate cell behaviour underlying CE in zebrafish and Xenopus. Many of these are homologues of genes that control epithelial planar cell polarity in Drosophila. However, elongation of axial mesoderm must be also coordinated with the pattern of AP tissue specification to generate a normal larval morphology. At present, the long-range control that orients CE with respect to embryonic axes is not understood. Here we show that the chordamesoderm of Xenopus possesses an intrinsic AP polarity that is necessary for CE, functions in parallel to Wnt/planar cell polarity signalling, and determines the direction of tissue elongation. The mechanism that establishes AP polarity involves graded activin-like signalling and directly links mesoderm AP patterning to CE.  相似文献   

9.
Scatter factor is a fibroblast-derived modulator of epithelial cell mobility   总被引:39,自引:0,他引:39  
M Stoker  E Gherardi  M Perryman  J Gray 《Nature》1987,327(6119):239-242
Various factors are known to regulate cell growth and differentiation, but less is known of agents which affect movement and positioning, particularly in epithelial-mesenchymal interactions. Cultured human embryo fibroblasts release a protein with a relative molecular mass (Mr) of approximately 50,000 (50K) that affects epithelial cells by causing a disruption of junctions, an increase in local motility and a scattering of contiguous sheets of cells. To investigate specificity, a range of cells has been examined for the ability to produce the factor and for sensitivity to its action. Most freshly isolated normal epithelia and epithelia from cell lines of normal tissue, but not epithelia from tumour cell lines or fibroblasts, were sensitive to scatter factor. In contrast, production of the factor, as identified by activity and by chromatography, was restricted to embryonic fibroblasts and certain variants of 3T3 and BHK21 cells and their transformed derivatives. We conclude that the scatter factor is a paracrine effector of epithelial-mesenchymal interaction, which affects the intercellular connections and mobility of normal epithelial cells. The factor might be involved in epithelial migration, such as occurs in embryogenesis or wound healing.  相似文献   

10.
DP Denning  V Hatch  HR Horvitz 《Nature》2012,488(7410):226-230
The elimination of unnecessary or defective cells from metazoans occurs during normal development and tissue homeostasis, as well as in response to infection or cellular damage. Although many cells are removed through caspase-mediated apoptosis followed by phagocytosis by engulfing cells, other mechanisms of cell elimination occur, including the extrusion of cells from epithelia through a poorly understood, possibly caspase-independent, process. Here we identify a mechanism of cell extrusion that is caspase independent and that can eliminate a subset of the Caenorhabditis elegans cells programmed to die during embryonic development. In wild-type animals, these cells die soon after their generation through caspase-mediated apoptosis. However, in mutants lacking all four C. elegans caspase genes, these cells are eliminated by being extruded from the developing embryo into the extra-embryonic space of the egg. The shed cells show apoptosis-like cytological and morphological characteristics, indicating that apoptosis can occur in the absence of caspases in C. elegans. We describe a kinase pathway required for cell extrusion involving PAR-4, STRD-1 and MOP-25.1/-25.2, the C. elegans homologues of the mammalian tumour-suppressor kinase LKB1 and its binding partners STRADα and MO25α. The AMPK-related kinase PIG-1, a possible target of the PAR-4–STRD-1–MOP-25 kinase complex, is also required for cell shedding. PIG-1 promotes shed-cell detachment by preventing the cell-surface expression of cell-adhesion molecules. Our findings reveal a mechanism for apoptotic cell elimination that is fundamentally distinct from that of canonical programmed cell death.  相似文献   

11.
Isolation of the dorsal locus of Drosophila   总被引:3,自引:0,他引:3  
R Steward  F J McNally  P Schedl 《Nature》1984,311(5983):262-265
The establishment of embryonic polarity is a crucial step in pattern formation and morphogenesis. In the fruitfly Drosophila melanogaster, embryonic polarity depends primarily on genes expressed in the female during oogenesis. Mutations in these 'maternal effect' genes can lead to major disruptions in normal pattern formation. Two classes of maternal genes essential for the establishment of polarity in the embryo have been identified. Lesions in one class, the 'bicaudal' genes, disrupt the anterior-posterior axis; lesions in the other class disrupt dorsal-ventral polarity, and in the most extreme cases embryos fail to form any ventral or lateral structures. Genetic studies suggest that the anterior-posterior and dorsal-ventral axes may be independent as the defects observed in mutants from each class seem to be restricted to one axis only. The dorsal (dl) locus is one of the maternal effect genes involved in the establishment of dorsal-ventral polarity. Homozygous dl females produce embryos exhibiting the mutant phenotype--complete lack of dorsal-ventral polarity in the strongest alleles--irrespective of the genotype of the father. Although dl is a maternal effect locus and must be expressed during oogenesis, the gene product, or a substance depending on the normal function of the dl gene, seems to be active early in embryogenesis, as the dl phenotype can be partially rescued by injection of cytoplasm from wild-type cleavage-stage embryos. Here we report the molecular cloning of the dorsal locus and a study of its expression.  相似文献   

12.
Notch signalling and the synchronization of the somite segmentation clock   总被引:10,自引:0,他引:10  
Jiang YJ  Aerne BL  Smithers L  Haddon C  Ish-Horowicz D  Lewis J 《Nature》2000,408(6811):475-479
In vertebrates with mutations in the Notch cell-cell communication pathway, segmentation fails: the boundaries demarcating somites, the segments of the embryonic body axis, are absent or irregular. This phenotype has prompted many investigations, but the role of Notch signalling in somitogenesis remains mysterious. Somite patterning is thought to be governed by a "clock-and-wavefront" mechanism: a biochemical oscillator (the segmentation clock) operates in the cells of the presomitic mesoderm, the immature tissue from which the somites are sequentially produced, and a wavefront of maturation sweeps back through this tissue, arresting oscillation and initiating somite differentiation. Cells arrested in different phases of their cycle express different genes, defining the spatially periodic pattern of somites and controlling the physical process of segmentation. Notch signalling, one might think, must be necessary for oscillation, or to organize subsequent events that create the somite boundaries. Here we analyse a set of zebrafish mutants and arrive at a different interpretation: the essential function of Notch signalling in somite segmentation is to keep the oscillations of neighbouring presomitic mesoderm cells synchronized.  相似文献   

13.
Adaptation of core mechanisms to generate cell polarity   总被引:34,自引:0,他引:34  
Nelson WJ 《Nature》2003,422(6933):766-774
Cell polarity is defined as asymmetry in cell shape, protein distributions and cell functions. It is characteristic of single-cell organisms, including yeast and bacteria, and cells in tissues of multi-cell organisms such as epithelia in worms, flies and mammals. This diversity raises several questions: do different cell types use different mechanisms to generate polarity, how is polarity signalled, how do cells react to that signal, and how is structural polarity translated into specialized functions? Analysis of evolutionarily diverse cell types reveals that cell-surface landmarks adapt core pathways for cytoskeleton assembly and protein transport to generate cell polarity.  相似文献   

14.
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.  相似文献   

15.
Pilot F  Philippe JM  Lemmers C  Lecuit T 《Nature》2006,442(7102):580-584
Epithelial tissues maintain a robust architecture during development. This fundamental property relies on intercellular adhesion through the formation of adherens junctions containing E-cadherin molecules. Localization of E-cadherin is stabilized through a pathway involving the recruitment of actin filaments by E-cadherin. Here we identify an additional pathway that organizes actin filaments in the apical junctional region (AJR) where adherens junctions form in embryonic epithelia. This pathway is controlled by Bitesize (Btsz), a synaptotagmin-like protein that is recruited in the AJR independently of E-cadherin and is required for epithelial stability in Drosophila embryos. On loss of btsz, E-cadherin is recruited normally to the AJR, but is not stabilized properly and actin filaments fail to form a stable continuous network. In the absence of E-cadherin, actin filaments are stable for a longer time than they are in btsz mutants. We identify two polarized cues that localize Btsz: phosphatidylinositol (4,5)-bisphosphate, to which Btsz binds; and Par-3. We show that Btsz binds to the Ezrin-Radixin-Moesin protein Moesin, an F-actin-binding protein that is localized apically and is recruited in the AJR in a btsz-dependent manner. Expression of a dominant-negative form of Ezrin that does not bind F-actin phenocopies the loss of btsz. Thus, our data indicate that, through their interaction, Btsz and Moesin may mediate the proper organization of actin in a local domain, which in turn stabilizes E-cadherin. These results provide a mechanism for the spatial order of actin organization underlying junction stabilization in primary embryonic epithelia.  相似文献   

16.
Scratching the surface of skin development   总被引:3,自引:0,他引:3  
Fuchs E 《Nature》2007,445(7130):834-842
The epidermis and its appendages develop from a single layer of multipotent embryonic progenitor keratinocytes. Embryonic stem cells receive cues from their environment that instruct them to commit to a particular differentiation programme and generate a stratified epidermis, hair follicles or sebaceous glands. Exciting recent developments have focused on how adult skin epithelia maintain populations of stem cells for use in the natural cycles of hair follicle regeneration and for re-epithelialization in response to wounding.  相似文献   

17.
肝脏干细胞的来源与潜能   总被引:1,自引:0,他引:1  
肝干细胞是肝脏内具有自我更新能力和多分化潜能的细胞,包括卵圆细胞、小型肝细胞和小肝细胞样前体细胞.其中,卵圆细胞可能来源于胚胎干细胞和/或骨髓干细胞.肝干细胞能分化为肝实质细胞和胆管上皮细胞,在一定条件下,还能分化为胰腺细胞、肠上皮细胞、肌细胞或转化为肝肿瘤细胞.  相似文献   

18.
Wang H  Ouyang Y  Somers WG  Chia W  Lu B 《Nature》2007,449(7158):96-100
Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and differentiation are unequally segregated between daughter cells. Numb is one such factor that is segregated to the differentiating daughter cell during the stem-cell-like neuroblast divisions in Drosophila melanogaster, where it inhibits self-renewal. The localization and function of Numb is cell-cycle-dependent. Here we show that Polo (ref. 13), a key cell cycle regulator, the mammalian counterparts of which have been implicated as oncogenes as well as tumour suppressors, acts as a tumour suppressor in the larval brain. Supernumerary neuroblasts are produced at the expense of neurons in polo mutants. Polo directly phosphorylates Partner of Numb (Pon, ref. 16), an adaptor protein for Numb, and this phosphorylation event is important for Pon to localize Numb. In polo mutants, the asymmetric localization of Pon, Numb and atypical protein kinase C are disrupted, whereas other polarity markers are largely unaffected. Overexpression of Numb suppresses neuroblast overproliferation caused by polo mutations, suggesting that Numb has a major role in mediating this effect of Polo. Our results reveal a biochemical link between the cell cycle and the asymmetric protein localization machinery, and indicate that Polo can inhibit progenitor self-renewal by regulating the localization and function of Numb.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号