首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
综合类   15篇
  2012年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Caenorhabditis elegans gene ced-9 protects cells from programmed cell death.   总被引:32,自引:0,他引:32  
M O Hengartner  R E Ellis  H R Horvitz 《Nature》1992,356(6369):494-499
The gene ced-9 of the nematode Caenorhabditis elegans acts to protect cells from programmed cell death. A mutation that abnormally activates ced-9 prevents the cell deaths that occur during normal C. elegans development. Conversely, mutations that inactivate ced-9 cause cells that normally live to undergo programmed cell death; these mutations result in embryonic lethality, indicating that ced-9 function is essential for development. The ced-9 gene functions by negatively regulating the activities of other genes that are required for the process of programmed cell death.  相似文献   
2.
S G Clark  M J Stern  H R Horvitz 《Nature》1992,356(6367):340-344
The induction of the hermaphrodite vulva and the migration of the sex myoblasts in the nematode Caenorhabditis elegans are both controlled by intercellular signalling. The gonadal anchor cell induces formation of the vulva from nearby hypodermal cells, and a set of somatic gonadal cells attract the migrating sex myoblasts to their final positions. Many genes required for vulval induction have been identified, including the let-23 receptor tyrosine kinase gene and the let-60 ras gene. We report here the identification and characterization of a new gene, sem-5 (sem, sex muscle abnormal), that acts both in vulval induction and in sex myoblast migration. On the basis of its DNA sequence, sem-5 encodes a novel 228-amino-acid protein which consists almost entirely of one SH2 (SH, src homology region) and two SH3 domains. SH2 and SH3 domains are present in many signalling proteins regulated by receptor and non-receptor tyrosine kinases. Mutations that impair sem-5 activity alter residues that are highly conserved among different SH2 and SH3 domains. Our results indicate that the sem-5 gene encodes a novel protein that functions in at least two distinct cell-signalling processes.  相似文献   
3.
4.
E L Ferguson  P W Sternberg  H R Horvitz 《Nature》1987,326(6110):259-267
Twenty-three genes have been assigned to particular steps in a genetic pathway for the specification of the vulval cell lineages of the nematode Caenorhabditis elegans. Mutations in most of these genes cause homoeotic transformations in the fates of individual cells, suggesting that these lineages may be specified by a series of decisions that distinguish between alternative cell fates. Fifteen of the genes function in a system involved in the intracellular response to the extracellular signal that induces vulval formation.  相似文献   
5.
H R Horvitz  P W Sternberg 《Nature》1991,351(6327):535-541
Developmental, genetic and molecular studies indicate that multiple intercellular signalling systems interact to specify the types and spatial patterns of cells generated during the formation of the vulva of the nematode Caenorhabditis elegans. Two classes of evolutionarily conserved transmembrane receptors and a Ras protein function in these signalling systems. The biology of vulval development provides a framework for understanding how cell interactions control the development of animals as diverse as nematodes, insects and mammals.  相似文献   
6.
DP Denning  V Hatch  HR Horvitz 《Nature》2012,488(7410):226-230
The elimination of unnecessary or defective cells from metazoans occurs during normal development and tissue homeostasis, as well as in response to infection or cellular damage. Although many cells are removed through caspase-mediated apoptosis followed by phagocytosis by engulfing cells, other mechanisms of cell elimination occur, including the extrusion of cells from epithelia through a poorly understood, possibly caspase-independent, process. Here we identify a mechanism of cell extrusion that is caspase independent and that can eliminate a subset of the Caenorhabditis elegans cells programmed to die during embryonic development. In wild-type animals, these cells die soon after their generation through caspase-mediated apoptosis. However, in mutants lacking all four C. elegans caspase genes, these cells are eliminated by being extruded from the developing embryo into the extra-embryonic space of the egg. The shed cells show apoptosis-like cytological and morphological characteristics, indicating that apoptosis can occur in the absence of caspases in C. elegans. We describe a kinase pathway required for cell extrusion involving PAR-4, STRD-1 and MOP-25.1/-25.2, the C. elegans homologues of the mammalian tumour-suppressor kinase LKB1 and its binding partners STRADα and MO25α. The AMPK-related kinase PIG-1, a possible target of the PAR-4–STRD-1–MOP-25 kinase complex, is also required for cell shedding. PIG-1 promotes shed-cell detachment by preventing the cell-surface expression of cell-adhesion molecules. Our findings reveal a mechanism for apoptotic cell elimination that is fundamentally distinct from that of canonical programmed cell death.  相似文献   
7.
8.
对任意停时T,定义A(T)={停时S:S≤T,在{T>0}上S相似文献   
9.
G Freyd  S K Kim  H R Horvitz 《Nature》1990,344(6269):876-879
The gene lin-11 is required for the asymmetric division of a vulval precursor cell type in the nematode Caenorhabditis elegans. Putative lin-11 complementary DNAs were sequenced and found to encode a protein that contains both a homeodomain and two tandem copies of a novel cysteine-rich motif: C-X2-C-X17-19-H-X2-C-X2-C-X2-C-X7-11-(C)-X8-C. Two tandem copies of this motif are also present amino-terminal to the homeodomains in the proteins encoded by the genes mec-3, which is required for C. elegans touch neuron differentiation, and isl-1, which encodes a rat insulin I gene enhancer-binding protein. The arrangement of cysteine residues in this motif, referred to as LIM (for lin-11 isl-1 mec-3), suggests that this region is a metal-binding domain. The presence in these three proteins of both a potential metal-binding domain and a homeodomain distinguishes them from previously characterized proteins.  相似文献   
10.
Ranganathan R  Cannon SC  Horvitz HR 《Nature》2000,408(6811):470-475
The neurotransmitter and neuromodulator serotonin (5-HT) functions by binding either to metabotropic G-protein-coupled receptors (for example, 5-HT1, 5-HT2, 5-HT4 to 5-HT7), which mediate 'slow' modulatory responses through numerous second messenger pathways, or to the ionotropic 5-HT3 receptor, a non-selective cation channel that mediates 'fast' membrane depolarizations. Here we report that the gene mod-1 (for modulation of locomotion defective) from the nematode Caenorhabditis elegans encodes a new type of ionotropic 5-HT receptor, a 5-HT-gated chloride channel. The predicted MOD-1 protein is similar to members of the nicotinic acetylcholine receptor family of ligand-gated ion channels, in particular to GABA (gamma-aminobutyric acid)- and glycine-gated chloride channels. The MOD-1 channel has distinctive ion selectivity and pharmacological properties. The reversal potential of the MOD-1 channel is dependent on the concentration of chloride ions but not of cations. The MOD-1 channel is not blocked by calcium ions or 5-HT3a-specific antagonists but is inhibited by the metabotropic 5-HT receptor antagonists mianserin and methiothepin. mod-1 mutant animals are defective in a 5-HT-mediated experience-dependent behaviour and are resistant to exogenous 5-HT, confirming that MOD-1 functions as a 5-HT receptor in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号