首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation   总被引:2,自引:0,他引:2  
Lee CY  Robinson KJ  Doe CQ 《Nature》2006,439(7076):594-598
How a cell chooses to proliferate or to differentiate is an important issue in stem cell and cancer biology. Drosophila neuroblasts undergo self-renewal with every cell division, producing another neuroblast and a differentiating daughter cell, but the mechanisms controlling the self-renewal/differentiation decision are poorly understood. Here we tested whether cell polarity genes, known to regulate embryonic neuroblast asymmetric cell division, also regulate neuroblast self-renewal. Clonal analysis in larval brains showed that pins mutant neuroblasts rapidly fail to self-renew, whereas lethal giant larvae (lgl) mutant neuroblasts generate multiple neuroblasts. Notably, lgl pins double mutant neuroblasts all divide symmetrically to self-renew, filling the brain with neuroblasts at the expense of neurons. The lgl pins neuroblasts show ectopic cortical localization of atypical protein kinase C (aPKC), and a decrease in aPKC expression reduces neuroblast numbers, suggesting that aPKC promotes neuroblast self-renewal. In support of this hypothesis, neuroblast-specific overexpression of membrane-targeted aPKC, but not a kinase-dead version, induces ectopic neuroblast self-renewal. We conclude that cortical aPKC kinase activity is a potent inducer of neuroblast self-renewal.  相似文献   

2.
Wodarz A  Ramrath A  Kuchinke U  Knust E 《Nature》1999,402(6761):544-547
Asymmetric cell division generates daughter cells with different developmental fates from progenitor cells that contain localized determinants. During this division, the asymmetric localization of cell-fate determinants and the orientation of the mitotic spindle must be precisely coordinated. In Drosophila neuroblasts, inscuteable controls both spindle orientation and the asymmetric localization of the cell-fate determinants Prospero and Numb. Inscuteable itself is localized in an apical cortical crescent and thus reflects the intrinsic asymmetry of the neuroblast. Here we show that localization of Inscuteable depends on Bazooka, a protein containing three PDZ domains with overall sequence similarity to Par-3 of Caenorhabditis elegans. Bazooka and Inscuteable form a complex that also contains Staufen, a protein responsible for the asymmetric localization of prospero messenger RNA. We propose that, after delamination of the neuroblast from the neuroepithelium, Bazooka provides an asymmetric cue in the apical cytocortex that is required to anchor Inscuteable. As Bazooka is also responsible for the maintenance of apical-basal polarity in epithelial tissues, it may be the missing link between epithelial polarity and neuroblast polarity.  相似文献   

3.
Schober M  Schaefer M  Knoblich JA 《Nature》1999,402(6761):548-551
Asymmetric cell divisions can be generated by the segregation of determinants into one of the two daughter cells. In Drosophila, neuroblasts divide asymmetrically along the apical-basal axis shortly after their delamination from the neuroectodermal epithelium. Several proteins, including Numb and Miranda, segregate into the basal daughter cell and are needed for the determination of its correct cell fate. Both the apical-basal orientation of the mitotic spindle and the localization of Numb and Miranda to the basal cell cortex are directed by Inscuteable, a protein that localizes to the apical cell cortex before and during neuroblast mitosis. Here we show that the apical localizaton of Inscuteable requires Bazooka, a protein containing a PDZ domain that is essential for apical-basal polarity in epithelial cells. Bazooka localizes with Inscuteable in neuroblasts and binds to the Inscuteable localization domain in vitro and in vivo. In embryos lacking both maternal and zygotic bazooka function, Inscuteable no longer localizes asymmetrically in neuroblasts and is instead uniformly distributed in the cytoplasm. Mitotic spindles in neuroblasts are misoriented in these embryos, and the proteins Numb and Miranda fail to localize asymmetrically in metaphase. Our results suggest that direct binding to Bazooka mediates the asymmetric localization of Inscuteable and connects the asymmetric division of neuroblasts to the axis of epithelial apical-basal polarity.  相似文献   

4.
Betschinger J  Mechtler K  Knoblich JA 《Nature》2003,422(6929):326-330
To generate different cell types, some cells can segregate protein determinants into one of their two daughter cells during mitosis. In Drosophila neuroblasts, the Par protein complex localizes apically and directs localization of the cell fate determinants Prospero and Numb and the adaptor proteins Miranda and Pon to the basal cell cortex, to ensure their segregation into the basal daughter cell. The Par protein complex has a conserved function in establishing cell polarity but how it directs proteins to the opposite side is unknown. We show here that a principal function of this complex is to phosphorylate the cytoskeletal protein Lethal (2) giant larvae (Lgl; also known as L(2)gl). Phosphorylation by Drosophila atypical protein kinase C (aPKC), a member of the Par protein complex, releases Lgl from its association with membranes and the actin cytoskeleton. Genetic and biochemical experiments show that Lgl phosphorylation prevents the localization of cell fate determinants to the apical cell cortex. Lgl promotes cortical localization of Miranda, and we propose that phosphorylation of Lgl by aPKC at the apical neuroblast cortex restricts Lgl activity and Miranda localization to the opposite, basal side of the cell.  相似文献   

5.
Ohshiro T  Yagami T  Zhang C  Matsuzaki F 《Nature》2000,408(6812):593-596
Cellular diversity during development arises in part from asymmetric divisions, which generate two distinct cells by transmitting localized determinants from a progenitor cell into one daughter cell. In Drosophila, neuroblasts undergo typical asymmetric divisions to produce another neuroblast and a ganglion mother cell. At mitosis, neural fate determinants, including Prospero and Numb, localize to the basal cortex, from which the ganglion mother cell buds off; Inscuteable and Bazooka, which regulate spindle orientation, localize apically. Here we show that a tumour-suppressor protein, Lethal giant larvae (Lgl), is essential for asymmetric cortical localization of all basal determinants in mitotic neuroblasts, and is therefore indispensable for neural fate decisions. Lgl, which itself is uniformly cortical, interacts with several types of Myosin to localize the determinants. Another tumour-suppressor protein, Lethal discs large (Dlg), participates in this process by regulating the localization of Lgl. The localization of the apical components is unaffected in lgl or dlg mutants. Thus, Lgl and Dlg act in a common process that differentially mediates cortical protein targeting in mitotic neuroblasts, and that creates intrinsic differences between daughter cells.  相似文献   

6.
Kiger AA  White-Cooper H  Fuller MT 《Nature》2000,407(6805):750-754
Stem cells maintain populations of highly differentiated, short-lived cell-types, including blood, skin and sperm, throughout adult life. Understanding the mechanisms that regulate stem cell behaviour is crucial for realizing their potential in regenerative medicine. A fundamental characteristic of stem cells is their capacity for asymmetric division: daughter cells either retain stem cell identity or initiate differentiation. However, stem cells are also capable of symmetric division where both daughters remain stem cells, indicating that mechanisms must exist to balance self-renewal capacity with differentiation. Here we present evidence that support cells surrounding the stem cells restrict self-renewal and control stem cell number by ensuring asymmetric division. Loss of function of the Drosophila Epidermal growth factor receptor in somatic cells disrupted the balance of self-renewal versus differentiation in the male germline, increasing the number of germline stem cells. We propose that activation of this receptor specifies normal behaviour of somatic support cells; in turn, the somatic cells play a guardian role, providing information that prevents self-renewal of stem cell identity by the germ cell they enclose.  相似文献   

7.
Drosophila neuroblasts and ovarian stem cells are well characterized models for stem cell biology. In both cell types, one daughter cell self-renews continuously while the other undergoes a limited number of divisions, stops to proliferate mitotically and differentiates. Whereas neuroblasts segregate the Trim-NHL (tripartite motif and Ncl-1, HT2A and Lin-41 domain)-containing protein Brain tumour (Brat) into one of the two daughter cells, ovarian stem cells are regulated by an extracellular signal from the surrounding stem cell niche. After division, one daughter cell looses niche contact. It undergoes 4 transit-amplifying divisions to form a cyst of 16 interconnected cells that reduce their rate of growth and stop to proliferate mitotically. Here we show that the Trim-NHL protein Mei-P26 (refs 7, 8) restricts growth and proliferation in the ovarian stem cell lineage. Mei-P26 expression is low in stem cells but is strongly induced in 16-cell cysts. In mei-P26 mutants, transit-amplifying cells are larger and proliferate indefinitely leading to the formation of an ovarian tumour. Like brat, mei-P26 regulates nucleolar size and can induce differentiation in Drosophila neuroblasts, suggesting that these genes act through the same pathway. We identify Argonaute-1, a component of the RISC complex, as a common binding partner of Brat and Mei-P26, and show that Mei-P26 acts by inhibiting the microRNA pathway. Mei-P26 and Brat have a similar domain composition that is also found in other tumour suppressors and might be a defining property of a new family of microRNA regulators that act specifically in stem cell lineages.  相似文献   

8.
Lambert JD  Nagy LM 《Nature》2002,420(6916):682-686
During development, different cell fates are generated by cell-cell interactions or by the asymmetric distribution of patterning molecules. Asymmetric inheritance is known to occur either through directed transport along actin microfilaments into one daughter cell or through capture of determinants by a region of the cortex inherited by one daughter. Here we report a third mechanism of asymmetric inheritance in a mollusc embryo. Different messenger RNAs associate with centrosomes in different cells and are subsequently distributed asymmetrically during division. The segregated mRNAs are diffusely distributed in the cytoplasm and then localize, in a microtubule-dependent manner, to the pericentriolar matrix. During division, they dissociate from the core mitotic centrosome and move by means of actin filaments to the presumptive animal daughter cell cortex. In experimental cells with two interphase centrosomes, mRNAs accumulate on the correct centrosome, indicating that differences between centrosomes control mRNA targeting. Blocking the accumulation of mRNAs on the centrosome shows that this event is required for subsequent cortical localization. These events produce a complex pattern of mRNA localization, in which different messages distinguish groups of cells with the same birth order rank and similar developmental potentials.  相似文献   

9.
Caulobacter flagellin mRNA segregates asymmetrically at cell division   总被引:13,自引:0,他引:13  
M Milhausen  N Agabian 《Nature》1983,302(5909):630-632
Molecular processes which promote the spatial localization of subcellular components are fundamental to cell development and differentiation. At various stages in development unequal segregation of molecular information must occur to result in the differentiated characteristics which distinguish cell progeny. Biological attributes of the dimorphic bacterium, Caulobacter crescentus, provide an experimental system permitting examination of the generation of asymmetry at the molecular level. When a Caulobacter cell divides, two different daughter cells are produced--a motile swarmer cell with a polar flagellum and a non-motile cell with a static appendage referred to as a stalk. The two cell types are distinct with respect to surface morphology, developmental potential, protein composition and biosynthetic capabilities. One of the more conspicuous manifestations of asymmetric expression of macromolecules in this system, the flagellum, has been studied extensively. We have cloned the flagellin genes of Caulobacter and report here the use of these sequences as probes to demonstrate that (1) the level of flagellin mRNA is regulated during the cell cycle in a pattern coincident with flagellum polypeptide synthesis and (2) flagellin mRNA synthesized before cell division is segregated with progeny swarmer cells. This provides molecular evidence of specific partitioning of an mRNA at the time of cell division.  相似文献   

10.
Peng CY  Manning L  Albertson R  Doe CQ 《Nature》2000,408(6812):596-600
Drosophila neuroblasts are a model system for studying asymmetric cell division: they divide unequally to produce an apical neuroblast and a basal ganglion mother cell that differ in size, mitotic activity and developmental potential. During neuroblast mitosis, an apical protein complex orients the mitotic spindle and targets determinants of cell fate to the basal cortex, but the mechanism of each process is unknown. Here we show that the tumour-suppressor genes lethal giant larvae (lgl) and discs large (dlg) regulate basal protein targeting, but not apical complex formation or spindle orientation, in both embryonic and larval neuroblasts. Dlg protein is apically enriched and is required for maintaining cortical localization of Lgl protein. Basal protein targeting requires microfilament and myosin function, yet the lgl phenotype is strongly suppressed by reducing levels of myosin II. We conclude that Dlg and Lgl promote, and myosin II inhibits, actomyosin-dependent basal protein targeting in neuroblasts.  相似文献   

11.
12.
13.
Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.  相似文献   

14.
Tran J  Brenner TJ  DiNardo S 《Nature》2000,407(6805):754-757
Stem cells divide both to produce new stem cells and to generate daughter cells that can differentiate. The underlying mechanisms are not well understood, but conceptually are of two kinds. Intrinsic mechanisms may control the unequal partitioning of determinants leading to asymmetric cell divisions that yield one stem cell and one differentiated daughter cell. Alternatively, extrinsic mechanisms, involving stromal cell signals, could cause daughter cells that remain in their proper niche to stay stem cells, whereas daughter cells that leave this niche differentiate. Here we use Drosophila spermatogenesis as a model stem cell system to show that there are excess stem cells and gonialblasts in testes that are deficient for Raf activity. In addition, the germline stem cell population remains active for a longer fraction of lifespan than in wild type. Finally, raf is required in somatic cells that surround germ cells. We conclude that a cell-extrinsic mechanism regulates germline stem cell behaviour.  相似文献   

15.
N-CoR controls differentiation of neural stem cells into astrocytes   总被引:36,自引:0,他引:36  
Hermanson O  Jepsen K  Rosenfeld MG 《Nature》2002,419(6910):934-939
  相似文献   

16.
芽列酵母的母细胞与子细胞呈不对称接合型转换,其原因是只有母细胞可表达编码核酸内切酶的基因HO,使相反接合型的缄默基因转位到活动位点取代了原来的接合型基因。HO的不对称表达是因在细胞分裂的末期至G1早期,子细胞核中存在有Ashlp转录抑制因子。Ashlp的不对称分布是由其mRNA的定向转运而实现的:ASH1 mRNA在有丝分裂期被转录出之后,通过接头蛋白She2p和She3p与肌球蛋白Myo4p结合成核糖核蛋白颗粒,经肌动蛋白纤维转运到子细胞远端皮层而锚定并翻译。  相似文献   

17.
Tio M  Udolph G  Yang X  Chia W 《Nature》2001,409(6823):1063-1067
Asymmetric cell divisions can be mediated by the preferential segregation of cell-fate determinants into one of two sibling daughters. In Drosophila neural progenitors, Inscuteable, Partner of Inscuteable and Bazooka localize as an apical cortical complex at interphase, which directs the apical-basal orientation of the mitotic spindle as well as the basal/cortical localization of the cell-fate determinants Numb and/or Prospero during mitosis. Although localization of these proteins shows dependence on the cell cycle, the involvement of cell-cycle components in asymmetric divisions has not been demonstrated. Here we show that neural progenitor asymmetric divisions require the cell-cycle regulator cdc2. By attenuating Drosophila cdc2 function without blocking mitosis, normally asymmetric progenitor divisions become defective, failing to correctly localize asymmetric components during mitosis and/or to resolve distinct sibling fates. cdc2 is not necessary for initiating apical complex formation during interphase; however, maintaining the asymmetric localization of the apical components during mitosis requires Cdc2/B-type cyclin complexes. Our findings link cdc2 with asymmetric divisions, and explain why the asymmetric localization of molecules like Inscuteable show cell-cycle dependence.  相似文献   

18.
19.
RhoGTPases are small molecules that control a wide variety of signal transduction pathways. Their profound function in regulating the actin cytoskeleton is well recognized. Stem cells are unique in their ability to self-renew and produce progenitor cells that can differentiate into specialized cells. RhoGTPases influence stem cell morphology and cell migration as well as stem cell self-renewal, proliferation, transplantation, homing and differentiation. In this review, the multiple roles of the RhoGTPases in stem cells are discussed.  相似文献   

20.
Asymmetric and symmetric stem-cell divisions in development and cancer   总被引:2,自引:0,他引:2  
Morrison SJ  Kimble J 《Nature》2006,441(7097):1068-1074
Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号