首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 211 毫秒
1.
研究了模数转换器(ADC)的数字后台校准技术,提出了一种针对2.5 b/级高速高精度流水线ADC的数字后台校准算法.在2.5b/级电容翻转式余量增益电路(MDAC)中注入与输入信号相关的抖动信号,提取MDAC中由于电容失配和放大器增益有限性造成的非线性误差,并在最终的数字输出端对这些误差进行校准.文中提出的数字后台校准算法具有电路实现简单、不中断ADC正常工作、适合高速高精度流水线ADC等优点,能有效地降低电容失配和放大器有限增益等非理想因素对流水线ADC精度的影响.仿真结果表明,经校准后的ADC信号噪声失真比可从63.3dB提高到78.7dB,无杂散动态范围由63.9 dB提高到91.8 dB.  相似文献   

2.
12位100 MHz Bicmos流水线模数转换器的设计   总被引:1,自引:0,他引:1  
为了解决流水线结构模数转换器(ADC)的高速度、高精度和大动态范围兼顾问题,提出了一种改进的2.5 b/级与1.5 b/级结构相结合的系统设计方案.该系统中,流水线第1级采用2.5 b/级结构,2~10级均采用1.5 b/级结构,改进后的结构增大了系统的动态范围,同时更加模块化,降低了电路设计的复杂度.设计了2级Bicmos运算放大器,并提出了一种全新的应用于1.5 b/级结构的差分比较器.所设计的运算放大器可同时实现高增益、大带宽,电路速度快,不需要额外的补偿电容,可应用于高频环境,并具有较大的输出摆幅.所设计的差分比较器电路简化,节省了元件,不需电阻分压网络产生参考电压,减小了芯片面积.ADC系统采用0.35 μm Bicmos工艺技术和3.3V工作电压,经仿真实验,在100 MHz的采样频率下,该系统的信噪比为73.7 dB,对应的有效位为11.95 b,无杂散动态范围为87.4 dB,实现了12位高分辨率和100 MHz的高采样速度.  相似文献   

3.
在详细分析了高速高精度模数转换技术原理的基础上,选择采用九级流水线结构实现具有10位分辨率、50Mhz采样频率的模数转换器电路。本文设计的九级流水线结构的模数转换器,采用全差分的开关电容电路实现。为了保证开关电容电路处理模拟信号的速度和精度,采用了差分跨导运算放大器,这个放大器采用共源共栅补偿和动态共模反馈,具有很好的增益和带宽。  相似文献   

4.
流水线模数转换器中高速低功耗开环余量放大器的设计   总被引:1,自引:1,他引:0  
为了降低流水线模数转换器(ADC)中余量放大器的功耗并提高其速度,提出了一种新的开环余量放大器结构及其增益控制方法.该放大器采用简单差动对结构,并使用放大器的复制电路和一个差动差值放大器来控制主放大器输入对管的跨导,以稳定开环余量放大器的增益.所提出的放大器结构可以工作在低电源电压下,而且不需要共模反馈电路,与采用共源共栅结构和共模反馈的开环放大器相比,功耗更低,响应速度更快.仿真结果表明,所提开环余量放大器的功耗仅为5.5mW,在满幅度阶跃输入的情况下,输出建立时间小于3ns.将该开环余量放大器应用到采用数字校准的流水线ADC中,实现了采样率为4×107s-1的12位模数转换.  相似文献   

5.
自行设计的流水线结构CMOS模数转换器(A/D)芯片,主要由9级流水线结构和数字校正电路组成.该设计方案采用了带源跟随器的叠式共源共栅放大器,保证了开关电容电路处理模拟信号的精度和速度;1.5位/级的转换方案减小了级间增益,使各级流水线达到较大的级间带宽;数字校正技术中借鉴了算法型A/D转换器的一些经验,用一个相对简单的数字校正电路完成了预定的功能.  相似文献   

6.
描述一个基于0.6μm CM O S工艺的、低功耗的13 b,107样品/s流水线模数转换器(ADC)的设计。为了达到13 b的转换精度,在电路设计中采用了电容误差平均技术;为了实现低功耗设计,在电路设计中综合采用了运算放大器共享、输入采样保持放大器消去、按比例缩小和动态比较器等技术。在考虑工艺实现中的非理想因素的条件下,对ADC电路进行晶体管级M on te-C arlo仿真,当ADC以10MH z的采样率对1MH z的正弦输入信号进行采样转换时,在其输出得到了82 dB的非杂散动态范围,并且此时ADC模拟部分的功耗仅为11mW。  相似文献   

7.
一种数字域自校正流水线模数转换器改进结构   总被引:1,自引:0,他引:1  
研究了对流水线模数转换器级间增益误差进行补偿的数字域自校正算法,提出了一种适用于数字域自校正的改进的流水线结构。该结构通过对参考电压的调整,避免了以往自校正结构中产生丢失码字、降低输入范围的现象。结果表明,校正后系统的线性度有了大幅度的提升。  相似文献   

8.
流水线结构模数转换器电容的误差平均技术   总被引:1,自引:0,他引:1  
电容误差平均技术是一种本质线性(inherentlylinear)的流水线模数转换电容失配校准技术,但其性能指数(分辨率×速度与功耗×面积之比)并不理想。为了提高性能指数,该文提出了一种改进的电容误差平均技术。该技术利用跨导运算放大器(OTA)的端口交换操作和双采样的误差平均功能来完成OTA失调的抵消,不需要采样相中的OTA单位增益状态,从而一方面加快了建立速度,另一方面使得相邻级可共享OTA,减少了功耗和面积。电路分析和MATLAB软件仿真表明,在两种典型的情况下,改进的方法能将速度提高14%(OTA为开关电容共模反馈)和23%(OTA为非开关电容共模反馈);而且由于OTA可共享,模数转换器(ADC)的功耗可降低近一半。改进的技术更适用于高速高精度及连续工作的应用场合。  相似文献   

9.
基于0.13,μm工艺,设计一个用于1.2,V低电压电源的10比特83MSPS流水线模数转换器的两级运算放大器.该放大器采用折叠共源共栅为第一级输入级结构,共源为第二级输出结构.详细介绍了运算放大器的设计思路、指标确定方法及调试中遇到的问题和解决方法.模拟结果显示:该运算放大器开环直流增益可达79.25,dB,在负载电容为2,pF时的单位增益频率达到838 MHz,在1.2,V低电压下输出摆幅满足设计要求,高达1 V,满足了10比特低电压高速度高精度模数转换器的要求.  相似文献   

10.
设计了一种适用于OTA-C滤波器的高线性运算跨导放大器(OTA).该OTA采用新型的乘法器输入级,以获得大的线性跨导输入范围;采用一种新的共模负反馈(CMFB)策略,将主放大器输出电压线性压缩后再引入CMFB电路,以改善传统CMFB结构对OTA输出线性范围的限制.在SMIC.35 μm标准CMOS工艺下仿真,结果显示:输入级的线性跨导差分输入电压范围达到了—2~2 V,等效跨导在1 μS时,直流(DC)开环增益达到了76 dB,共模抑制比(CMRR)为140 dB,电源抑制比(PSRR)为144 dB.基于这种OTA设计了OTA-C二阶低通巴特沃斯滤波器.通过调节OTA的跨导,滤波器在1 pf的负载电容下的截止频率从11 kHz变化至419 kHz;当截止频率为100 kHz时输出为3 Vp-p@100 kHz时的总谐波失真(THD)为—47 dB.  相似文献   

11.
设计了一个10 bit精度,50 MS/s采样频率的流水线型模数转换器,通过运算放大器共享和省略采样保持实现低功耗.第1级为单比特输出,它能够在将信号摆幅减半的同时保持信噪比不衰减,减半的摆幅使得运放直流增益和带宽要求以及电容匹配要求降低.由于采用运放共享技术,该设计只使用了4个运放,功耗相比传统结构降低1/3.采用0...  相似文献   

12.
介绍一种全差分、低功耗CMOS运算跨导放大器(OTA)。这种放大器用于10位分辨率、30MHz采样频率的流水线式A/D转换器的采样-保持和级间减法-增益电路中。该放大器由一个折叠-级联OTA和一个共源输出增益级构成,并采用了改进的密勒补偿,以期达到最大的带宽和足够的相位裕度。经过精心设计,该放大器在0.35μmCOMS工艺中带宽为590MHz,开环增益为90dB,功耗为15mW,满足高速A/D转换器要求的所有性能指标。  相似文献   

13.
设计了一种主要用于微传感器读出电路的输出缓冲放大器。该电路被设计为恒定跨导、Rail-to-Rail的结构,同时还具有输出共模范围大(0~5V)、输出电阻小、电路结构紧凑、非线性失真小等优点。仿真及流片测试证明了以上特点。  相似文献   

14.
采样-保持电路中的一种增益误差自校正方法   总被引:3,自引:0,他引:3  
提出一种用于流水线模数转换器(ADC)中的模拟增益误差自校正电路.该电路由一个可编程电容阵列、一个比较器和一小块数字电路组成,通过对第一级采样一保持电路的增益进行校正,使它的增益误差达到12bit转换精度的要求。仿真结果表明,整个流水线ADC的有效量化位数从原来的9.95bit提高到11bit。  相似文献   

15.
给出了一种常用两级低电压CMOS运算放大器的输入级、中间增益级及输出级的原理电路图,并阐述其主要工作特性.输入级采用了NMOS管和PMOS管并联的互补差分输入对结构,使输入共模电压范围达到全摆幅(rail-to-rail),并采用了成比例的电流镜技术以实现输入级跨导的恒定;中间增益级采用了适合低电压工作的低压宽摆幅共源共栅结构的电流镜负载,提高了输出电阻,进而提高了增益,同时更好的实现了全摆幅特性;输出级采用了高效率的推挽共源极功率放大器,使输出电压摆幅基本上可以达到全摆幅;为了保证运放的稳定性与精确性,其基准电流源采用一个带电流镜负载的差分放大器;为防止运放产生振荡,采用了带调零电阻的密勒补偿技术对运放进行频率补偿.  相似文献   

16.
周游 《科学技术与工程》2011,11(14):3201-3203
设计和研究了一种高增益恒跨导Rail-Rail CMOS运算放大器,输入级采用工作在亚阈值区的互补差分形式输入结构。与以往输入结构相比,不仅使输入共模电压达到Rail-Rail,而且降低了工作电压,提高了电源利用率。利用电流开关的作用使输入跨导在输入共模范围内恒定。中间级为MOS差分结构,并且同向驱动输出级使其具有推挽特性。采用嵌套米勒频率补偿使运算放大器稳定。整个电路采用华虹0.35μmCMOS工艺参数进行设计,工作电压为3.0 V。利用OrCAD HSPICE仿真结果显示,在10 kΩ电阻和5 pF电容的负载下,运算放大的直流开环增益为110 dB,相位裕度为70°,单位增益带宽为45 MHz。  相似文献   

17.
一种新型电荷放大器的设计方法与电路   总被引:2,自引:0,他引:2  
介绍了一种新的电荷放大器的方法和电路。该电路主要由电流转换电路、恒流源电路、积分电路、模拟开关电路等组成,其突出特点是转换速度快、电路简单及输人信号范围大,适合构建成多路,在传感器测量系统中有着广泛地应用前景。  相似文献   

18.
对带有源负载的CMOS双平衡Gilbert有源混频器的1/f噪声、线性度与转换增益进行深入分析。这款采用PMOSFETs做负载的混频器工作于2.4 GHz频段。为降低混频器的1/f噪声, 利用双阱工艺中的寄生垂直NPN晶体管作为开关, 同时在PMOSFETs处并联最低噪声的分流电路作为负载。运用在PMOSFETs处的高性能运算放大器, 不仅为零中频输出提供了合适的直流偏置电压, 以避免下级电路的饱和, 并能够为混频器提供足够高的转换增益。同时, 在输入跨导(Gm)级电路中采用电容交叉耦合电路能够将转换增益进一步提高。为了增加混频器的线性度, 采用共栅放大器作为输入跨导级电路。这款混频器采用TSMC 0.18m 1-Poly 6-Metal RF CMOS工艺, 在1.5 V电源电压、3 mA的电流消耗下获得了17.78 dB的转换增益、13.24 dB的噪声因子和4.45 dBm输入三阶交调点的高性能。  相似文献   

19.
为提高双斜率积分ADC中模拟输入信号转换成数字信号的准确性,设计了一种高性能开关电容积分器以替代传统的RC有源积分器。该开关电容积分器的运算放大器由折叠共源共栅输入级和Class AB输出级组成,开关部分选用CMOS开关,以抑制电荷注入和时钟馈通的影响。在中芯国际0.18μmCMOS工艺下,采用EDA仿真软件对相关模块进行仿真验证,得到运算放大器的直流增益为110.3 dB,单位增益带宽为5.64 MHz,相位裕度达到79°,输出摆幅为0.013 3~3 299 mV,转换速率为7.56 MV/s。结果表明,开关电容积分器完全满足双斜率积分ADC的实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号