首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
微波辐射处理活性炭—吡啶溶液的实验   总被引:1,自引:1,他引:1  
以活性炭、吡啶溶液为研究对象。考察了微波辐射时间、微波功率、活性炭用量、吡啶溶液初始溶液浓度、pH值等因素对微波处理活性炭、吡啶溶液的影响。实验结果表明:微波辐射处理后的活性炭对吡啶的吸附具有明显的高效率,3.5min去除率即可达60%以上;而不用微波辐射处理的活性炭对吡啶的吸附,50min后,去除率才达70%。微波辐射使活性炭孔隙结构发生了明显的变化.增强了其对吡啶的吸附能力.  相似文献   

2.
微波辐射稻草浆蒸煮黑液处理技术的研究   总被引:1,自引:0,他引:1  
本文分析了以颗粒活性炭和CuO为催化剂条件下,微波辐射对稻草浆蒸煮黑液的处理的效果,考察了CuO与活性炭总量、比例,微波辐射功率,微波辐射时间等对黑液处理效果的影响.得出以活性炭CuO为吸附催化剂在微波辐射条件下对稻草浆蒸煮黑液的处理效果非常理想.同时对微波辐射处理的反应机理进行了初步探讨.结果表明黑液中的木质素等有机污染物被氧化分解的过程是活性炭CuO吸附降解和微波诱导催化氧化协同作用的结果.该方法具有设备简单,操作方便,处理时间短,反应彻底,无二次污染物产生等优点,可用于处理含有难降解有机污染物的造纸废水.  相似文献   

3.
微波辐射-活性炭法处理印染废水的研究   总被引:2,自引:0,他引:2  
研究了微波辐射-活性炭法处理印染废水的工艺条件。试验结果表明:在未调节印染废水pH(6.5)的条件下,活性炭用量为0.010g/mL,微波辐射功率为900W,辐射时间为8min,COD去除率达到了93.6%,色度去除率达到了100%,处理后的水达到了国家一级排放标准。用微波辐射-活性炭法处理印染废水比用活性炭法或微波辐射法处理印染废水效果好。  相似文献   

4.
甲基紫染料废水的微波诱导催化降解   总被引:15,自引:0,他引:15  
采用微波辐照技术处理甲基紫染料废水,在对徽波具有很强吸收能力的活性炭存在下,微波辐射可使甲基紫染料废水迅速脱色。甲基紫的微波降解反应可近似看成一级反应。对微波辐射时间、甲基紫溶液初始浓度、溶液pH值、活性炭用量和微波辐射功率等因素对甲基紫脱色率的影响进行了研究。初步讨论了微波辐射下甲基紫染料废水的降解机理。  相似文献   

5.
微波-活性炭催化法处理结晶紫溶液的研究   总被引:11,自引:2,他引:9  
以结晶紫溶液为处理对象,研究在活性炭存在和通入空气的条件下,微波辐射处理染料废水的可行性及其影响处理过程的因素和影响规律.结果表明:(1)微波具有加速结晶紫裂解和被氧化速度的作用,如在溶液中加入活性炭或通入空气,均能提高结晶紫的去除速率;(2)增加微波辐射电压、处理时间和活性炭用量(固液比)均能提高微波—吸附催化法处理结晶紫溶液的脱色率.不同的溶液浓度,脱色率也不同,浓度越高,脱色率越大;(3)微波辐射—活性炭催化法对结晶紫废水的处理有很好的可行性,在1:10的固液比下,微波辐射30min,可达到99.6%的脱色率.  相似文献   

6.
微波诱导氧化处理苯酚废水研究   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺处理苯酚废水,以颗粒活性炭为催化剂,考察了活性炭粒径、溶液pH值、活性炭用量、微波辐射功率、微波辐射时间等因素对处理效果的影响。结果表明,采用12~18目的活性炭6g与100mL废水混合,在微波辐射功率为462W,辐射时间为5 min的工艺条件下,苯酚去除率达到94.17%,废水的pH对处理效果几乎没有影响。通过正交实验研究表明,各因素对处理效果的影响依次为:活性炭用量〉微波辐射时间〉微波功率〉pH值。进一步研究表明,微波诱导氧化对苯酚的处理效果优于活性炭吸附和单纯的微波加热,这是活性炭吸附和微波诱导氧化协同作用的结果。反应动力学研究表明,该氧化过程符合一级反应动力学规律。  相似文献   

7.
以颗粒活性炭为催化剂,运用微波协同氧化工艺对造纸黑液进行处理并对其结果进行分析,考察活性炭用量、微波辐射功率,微波辐射时间等对黑液处理效果的影响.结果表明:微波协同活性炭处理造纸黑液效果比较理想,其影响顺序为辐射功率>活性炭用量>辐射时间,最佳的工艺条件:微波辐射700 W,辐射8 min,活性炭用量8 g,黑液的色度去除率稳定达到94%.  相似文献   

8.
对微波/活性炭组合催化用于石化废水的深度处理效果进行了研究.通过单因素实验分析,合理选取活性炭用量、微波辐射时间、微波辐射功率可使废水COD的去除率达到70%以上,同时也表明,水样pH值对组合处理过程中COD去除效果影响不大.根据正交试验实验结果表明,各因素对COD去除率影响的作用大小为:微波辐射时间>活性炭用量>微波辐射功率.为使废水处理后COD低于50 mg/L综合考虑经济与技术条件,确定最佳组合方案为:活性炭用量为6 g(每100 mL水样),微波辐射功率为700 W,微波辐射时间为6 min,水样pH值保持原始数值.  相似文献   

9.
载锰活性炭对甲基紫染料微波降解作用研究   总被引:6,自引:0,他引:6  
研究甲基紫染料微波辐射降解的可行性及动力学。制备出一系列负载锰氧化物的颗粒活性炭,研究发现:在活性炭存在下,微波辐射可使甲基紫染料废水迅速脱色。甲基紫的微波降解动力学可近似看作一级反应。微波辐射时间、甲基紫溶液初始浓度、溶液pH值、活性炭量和微波辐射功率等因素对甲基紫的微波降解均有影响。相对于普通活性炭,适当负载锰氧化物后可以明显提高甲基紫的降解率。对微波辐射下甲基紫的降解机理也进行了研究。  相似文献   

10.
微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚   总被引:8,自引:0,他引:8  
以1.0g苯酚溶于1000InL无酚水中作为模拟水样组成反应模型,利用微波辐射以Fenton试剂与活性炭组成的催化氧化体系来降解水中苯酚,并研究了各种因素对微波辐射该体系催化氧化降解苯酚反应的影响.研究表明,微波辐射.Fenton试剂一活性炭催化氧化体系能高效快速降解水中苯酚,较彻底地矿化水中有机物,使处理后的模拟水有机物含量达到饮用水的标准.其优化条件为:微波输出功率650w,微波辐射时间为15min,活性炭用量1.0g,Fenton试剂H2O2与FeSO4,7H2O物质量比为50:1。  相似文献   

11.
微波辅助催化氧化高浓度含醛废水应用研究   总被引:18,自引:0,他引:18  
考查了活性炭(GAC)固定床反应器在微波辅助催化氧化作用下对某石化公司高浓度含醛废水的连续处理情况,在消除活性炭吸附作用后,在微波功率400W、废水流量6.0mL/min、空气流量0.085m^3/h和45gGAC条件下对含醛废水(初始CODCr浓度为33494mg/L)进行了处理.实验结果表明,含醛废水的CODCr去除率为94%,TOC去除率为99%;在没有GAC的条件下,微波对含醛废水则几乎没有效果.  相似文献   

12.
采用活性炭吸附法和超滤法,对城市污水厂二级出水进行了深度处理试验研究.试验结果表明,粒状活性炭对污水中溶解性有机物有较好的去除效果,当允许出水CODcr为15mg/L以下、炭层厚度为2m、滤速为3m/h、5m/h和7m/h时,吨水用炭量基本在0.2kg/m^3.超滤对水中浊度去除率在95%以上.超滤膜清洗采用洗涤剂配制的清洗液及质量分数为5%的H2SO4.4%的NaOH溶液清洗,膜通量可得到较好的恢复  相似文献   

13.
微波再生铁屑-活性炭处理染料废水   总被引:20,自引:1,他引:20  
提出一种运用微波再生活性炭与铁屑混合物处理染料废水的新方法,结果表明:炭铁混合物较单独活性炭对染液废水的去除率有明显提高;铁屑的加入可以促进微波再生、活化活性炭,同时吸附在活性炭中的染料得到降解;微波作用多次后炭铁对废7K的去除率仍能保持色度去除率99%以上、COD去除率64%以上;探讨了铁屑粒径、炭铁比例、微波作用时间、微波作用次数等因素对废水去除率的影响。  相似文献   

14.
采用微波加热法,以制药厂污泥为原料,氯化锌为活化剂制备污泥活性炭.结果表明,微波功率、辐照时间和氯化锌浓度对污泥活性炭吸附性能具有较大的影响.制备污泥吸附剂的适宜条件为:干污泥与CuSO4质量比为20∶1,ZnCl2浓度为4 mol/L,微波功率为464W,辐照时间为5min.利用该活性炭处理制药废水,脱色率和COD去除率分别达到90.2%和91.6%.  相似文献   

15.
膨润土吸附-微波催化氧化处理番茄酱生产废水的研究   总被引:2,自引:0,他引:2  
采用膨润土吸附-微波催化氧化技术处理番茄酱生产废水,考察了膨润土添加量、H2O2用量、辐射时间以及微波功率对废水处理效果的影响.确定微波催化氧化的条件是:微波功率650 W、辐射时间13 min、H2O2用量0.21 mL、膨润土用量1.1 g/L.在此条件下对废水进行处理,处理时间由2 h缩短为13 min,废水的COD和TOC去除率分别为84.8 %和80.1 %.  相似文献   

16.
提出一种新型的、无需添加氧化剂处理结晶紫废水的方法.通过共沉淀晶化法制备微波催化剂MgFe_2O_4-Fe_2O_3,在微波辐照下降解结晶紫废水,考察了催化剂用量、微波功率、辐照时间对结晶紫去除率的影响.结果表明:在一定条件下,去除率随着催化剂用量的增加、微波功率的增大、微波辐照时间的延长而增加.当微波功率为800 W,辐照时间5min,催化剂用量1g/L时,处理200mg/L的结晶紫废水,去除率可达99.3%.本文还对微波催化氧化机理进行了探究,通过添加不同氧化基团清除剂的实验发现,氧化基团清除剂的添加降低了结晶紫的去除率,并提出了该反应的微观机理:微波催化剂吸收电磁波发生光电效应,产生电子和空穴对,与水等作用产生·OH,·OH再氧化降解废水中的有机物.  相似文献   

17.
厌氧流化床处理红霉素废水启动实验研究   总被引:1,自引:0,他引:1  
对中温(32±2℃)条件下颗粒活性炭(GAC)载体厌氧流化床(AFB)反应器处理红霉素废水启动方法进行了研究。实验表明:采用稳定进水COD基质浓度,控制红霉素废水与人工合成废水比例,以红霉素废水逐步取代人工合成废水的方法,达到了微生物的顺利驯化和反应器较快启动的目的。  相似文献   

18.
微波强化内电解处理活性艳红X-3B染色废水   总被引:5,自引:1,他引:5  
提出一种微波强化内电解处理染色废水的新方法,结果表明:微波不仅可以再生炭铁混合物,而且可以氧化分解活性炭吸附的染料:铁屑不仅与活性炭构成内电解作用同时还可以促进微波再生活性炭:微波作用多次后炭铁混合物对废水的去除率仍能保持色度去除率99%、COD去除率64%;探讨了微波作用时间、微波作用次数、铁屑粒径,炭铁比例、pH值等因素对废水去除率的影响。并初步探讨了其反应机理。  相似文献   

19.
采用微波催化氧化联用技术处理敌百虫农药废水,分别讨论废水酸度、微波加热功率和微波处理时间对废水化学需氧量(chemical oxygen demand,COD)去除率的影响.结果表明:当废水pH为1、双氧水加入量为4 mL·L~(-1)、活性炭加入量为8 g·L~(-1)、微波加热功率为350 W、微波处理时间为5 min时,COD去除率为92.18%.动力学研究表明,在最佳条件下反应的表观过程近似符合一级反应规律,其动力学方程为1n(ρo/ρ)=0.1776t+0.0279,速率常数k=0.177 6 min~(-1),相关系数为0.974 7,半衰期t_(1/2)=3.902 min.  相似文献   

20.
 针对工业染料废水处理难的问题,采用微波催化氧化降解(MCOD)方法,不添加氧化剂处理结晶紫模拟废水。首先用浸渍法制备CuO/AC 催化剂,采用X 射线衍射(XRD)、傅里叶红外光谱(FT-IR)技术对催化剂样品进行表征。考查CuO 担载量及催化剂用量、微波功率、微波反应时间、催化剂用量、反应液初始质量浓度等因素对结晶紫去除率的影响。结果表明,在微波功率400 W 条件下,使用0.6 g CuO 担载量为质量分数0.8%的微波催化剂CuO/AC,处理100 mL 初始质量浓度为100 mg/L 的结晶紫模拟废水6 min,降解率可达99.48%,相应有机碳去除率为94.01%。通过添加不同氧化基团清除剂的实验发现,反应过程中产生了羟基自由基(·OH)。这种微波催化氧化降解(MCOD)新方法可高效处理结晶紫模拟废水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号