首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用基于RBF神经网络的控制方法对Duffing混沌系统进行控制,运用RBF神经网络对受控的Duffing系统动力学方程中的非线性项进行自适应逼近,在保证受控系统在原点处的平衡态是一致渐进稳定的前提下,设计了相应的控制律及自适应控制律,使系统的状态变量在很短时间内稳定地收敛于目标值,仿真结果证明了该方法的有效性。  相似文献   

2.
提出了一种基于反演设计和RBF神经网络自适应的非完整移动机器人轨迹跟踪方法.首先,设计一个虚拟的速度控制律使得输出跟踪误差尽可能小;然后,利用反演技术设计一个基于RBF神经网络的动力学控制器,以确保在机器人系统中存在不确定性和外界扰动的情况下,机器人仍具有良好的跟踪能力.RBF神经网络连接权值在线自适应律由Lyapunov理论导出,保证了控制系统的稳定性.本文提出方法的主要优点是不需要移动机器人动力学的先验知识,而且对外界扰动具有良好的鲁棒性.最后,在两轮非完整移动机器人上的仿真结果证明了本文所提出方法的有效性.  相似文献   

3.
针对旋转导向钻井稳定平台存在的摩擦问题带来的不确定性,提出一种基于RBF神经网络的自适应滑模变结构控制方法,以提高稳定平台控制的精确性和抗干扰能力。使用RBF神经网络对稳定平台模型中的不确定性进行逼近,通过设计RBF网络节点的唤醒与激活阈值来减少网络规模,同时设计权值调整的自适应律,并结合滑模控制增强系统的鲁棒性。分别采用一般滑模变结构控制方法和RBF神经网络滑模变结构控制方法进行仿真实验,结果表明,RBF神经网络滑模变结构控制方法能够有效地逼近控制对象模型,有较强的鲁棒性。  相似文献   

4.
针对一类欠驱动系统在系统不确定性和外界干扰条件下的稳定控制问题,文章提出了自适应神经网络滑模控制策略。利用基于径向基函数(RBF)的神经网络在线估计系统的不确定量,采用李雅普诺夫方法设计自适应算法在线调整神经网络的参数;同时,利用带自适应算法的神经网络调节滑模控制的增益来消除滑模控制中的输入抖振现象;并通过李雅普诺夫定理论证了系统的稳定性。与传统滑模控制策略的仿真结果对比证明了系统是全局渐进稳定的,且控制器具有很好的适应性和鲁棒性。  相似文献   

5.
一类非线性离散系统的神经网络自适应控制   总被引:1,自引:0,他引:1  
针对一类控制方向未知的单输入单输出非线性离散系统,将常规增量式数字PID控制器与自适应神经网络控制项相结合,提出了一种能够保证闭环系统稳定的自适应神经网络控制方法.常规PID控制器用来保证近似线性系统的稳定,自适应神经网络项用来处理非线性项对闭环系统的影响.在神经网络权值修正律中引入离散Nussbaum增益来解决被控系统控制方向未知的问题.证明了闭环系统的所有信号有界,且跟踪误差收敛于紧集,并通过仿真验证了所提方法的有效性.  相似文献   

6.
针对船舶模型不确定和控制增益未知的非线性船舶航向控制问题,基于RBF神经网络自适应控制,提出一种新的非线性航向保持控制器.首先,在理论上证明存在连续的控制律;然后,通过RBF神经网络对其逼近;最后,借助Lyapunov稳定性理论分析证明船舶航向保持闭环系统的所有误差信号一致最终有界.仿真研究验证了该控制器的有效性.  相似文献   

7.
采用自适应控制方法对永磁同步电机混沌系统进行控制研究,当该混沌系统参数未知时,基于Lyapunov稳定性理论,设计了相应的控制器和参数自适应律,使系统的状态控制到任意一个不稳定平衡点,并运用Barbalat引理,在理论上证明了受控系统的渐进稳定性,从而消除了混沌,仿真结果证明了该方法的有效性.  相似文献   

8.
针对一类控制输入为三角形式的多输入多输出离散非线性系统,提出了基于反步法的自适应神经网络控制方法.由于该系统的控制输入为非仿射形式,不能采用反馈线性化的方法设计控制系统;因此,首先采用隐函数定理证实了能够使系统输出跟踪期望轨迹的理想控制输入的存在性,并构造了理想的控制输入.利用高阶神经网络估计这些控制输入,提出了基于反步法的自适应神经网络控制方法.证明了所提出的控制方法能够保证闭环系统的所有信号半全局一致最终有界,并通过仿真验证了该方法的有效性.  相似文献   

9.
一类参数不确定时滞混沌系统的反同步   总被引:1,自引:1,他引:0  
针对一类不确定时滞混沌系统,基于Lyapunov稳定性理论,结合自适应控制方法,设计了自适应控制器及参数自适应律,证明了控制器和自适应律在参数不确定的情况下可实现时滞混沌系统的反同步,对不确定参数做出识别,并分析了控制调节器Ω的作用.数值仿真结果表明,该方法正确、有效.  相似文献   

10.
针对一类具有死区非线性输入和外部扰动的不确定分数阶混沌系统同步问题,提出一种模糊神经网络结合自适应滑模控制的同步方法.利用模糊神经网络逼近未知的非线性函数,并且对逼近误差采用自适应控制进行补偿,同时构造了一种具有较强鲁棒性的分数阶积分滑模面.应用分数阶Barbalat引理和分数阶稳定性理论,设计自适应模糊神经网络滑模控制器和参数自适应律.数值仿真结果验证了该控制方法的有效性.  相似文献   

11.
针对机械手控制系统中的不确定因素,提出了RBF神经网络逼近不确定项的自适应控制策略。在逆动力学计算力矩方法的基础上,设计了鲁棒自适应控制器。利用RBF神经网络对模型中的不确定项分块进行逼近,并用Lyapunov稳定性理论建立了网络权重自适应学习律,证明了系统的全局稳定性;最后进行了仿真,结果表明该方法能够有效的消除模型不确定性的影响,准确地实现了轨迹跟踪。  相似文献   

12.
对于多输入多输出(multiple inputs multiple outputs,简称MIMO)混沌系统的同步问题,设计了基于误差比例-积分-微分(proportional integral derivative,简称PID)改进下的滑模径向基函数神经网络(radial basis function,简称RBF)控制方法,实现了主从统一混沌系统的同步.设计自适应RBF滑模控制器,将其用于初值不同的不确定主从统一混沌系统的同步控制中,证明了控制的Lyapunov稳定性.最后结合MATLAB仿真实验验证了所提方法的可行性与有效性.  相似文献   

13.
对于带有多个离散和分布时滞且有外部干扰的不确定线性系统提出一类鲁棒自适应控制方案.系统的不确定性是范数有界的未知连续函数,外部干扰是扇形有界的.分2步证明其结论:首先用线性矩阵不等式方法说明状态反馈控制可以保证系统的确定部分的稳定性;其次由于系统的不确定部分的上界未知,用自适应的方法来估计上界的值;利用径向基函数神经网络来估计关于状态的未知连续函数;最终证明了在结合状态反馈和自适应神经网络控制的复合控制律作用下闭环系统是渐近稳定的.然后,在第一步基础上,要求系统满足2个不等式条件,设计相应的控制律参数,用Lyapunov-Krasovskii泛函方法证明了闭环系统是指数稳定的.  相似文献   

14.
为了避免机器人关节角位移受外界影响,提高运动轨迹的跟踪精度,采用混合算法优化神经网络滑模控制器,并对优化后的控制器进行仿真验证.建立机器人平面简图模型,利用拉格朗日定理推导出机器人关节运动方程式,采用神经网络算法构建RBF神经网络自适应滑模控制系统.为了增强控制系统的稳定性,削弱外界波形对机器人运动轨迹的干扰,利用粒子群算法和差分进化算法在线优化RBF神经网络滑模控制律参数,设计了改进RBF神经网络滑模可调参数的自适应控制律,保证机器人控制系统的稳定性.通过MATLAB软件进行仿真实验,并且与优化前机器人关节角位移输出误差形成对比.仿真结果显示:随着干扰波形幅度的增大,采用神经网络滑模控制器,机器人关节输出角位移误差逐渐增大,系统不稳定,而采用混合算法优化神经网络滑模控制器,系统反应速度较快,机器人关节输出角位移误差较小.机器人采用混合算法优化神经网络控制器,能够提高控制系统的抗干扰能力,稳定性较好、输出精度较高.  相似文献   

15.
针对带有不确定性和扰动的二惯量伺服系统,提出了一种基于区间二型模糊神经网络的自适应反演控制策略抑制系统的机械振动.首先建立了二惯量系统的动力学模型,设计了反演自适应控制律;其次系统中负载和电机两端未知的扰动变量定义为待估计项,采用区间二型模糊神经网络对其进行估计,给出了基于区间二型模糊神经网络的参数自适应律.基于李雅普诺夫稳定性理论,证明了闭环系统输出跟踪的收敛性,并且跟踪误差可以通过调节控制参数达到任意小.仿真结果表明该方法具有较好的控制性能.   相似文献   

16.
针对一类单输入单输出非线性时滞系统,提出了一种自适应神经网络迭代学习控制方案,神经网络用来逼近未知非线性函数和未知非线性时滞函数,放宽了传统迭代学习控制对非线性函数和非线性时滞函数的限制,拓展了迭代学习控制的应用范围.采用Lyapunov—Krasovskii函数和利用反演(Backstepping)技术设计神经网络学习律和控制律,基于Lyapunov稳定性理论,证明了闭环系统所有信号半全局一致最终有界,通过调节设计参数可以实现对目标轨线任意精度的跟踪.  相似文献   

17.
采用自适应控制方法对Rossler系统进行控制。当该混沌动力学系统的参数未知时,对原系统进行坐标变换,基于Lyapunov稳定性理论,设计合适的控制器和参数自适应律,通过理论推导证明了变换后系统在原点的渐近稳定性,从而理论上证明了原系统可控制到不稳定平衡点的结论。系统仿真结果证明可使系统控制到任意一个不稳定平衡点,从而达到了控制目的,力证了该方法的有效性。  相似文献   

18.
为实现机器人关节位置镇定和轨迹跟踪控制,控制律的设计须针对确定的机器人动力学模型,由于机器人结构参数、作业环境的外界干扰及结构振动等不确定性因素的存在,会造成机器人动力学模型不确定.为此,设计3个RBF神经网络分别对不确定机器人模型中的3个不确定项进行分块建模,得到机器人估计模型,神经网络的权值采用自适应算法.针对机器人估计模型设计PI鲁棒滑模控制律.将所设计的控制器用于三关节机器人的三个关节的力矩控制,研究结果表明:三关节均约在1 s时达到期望位置和跟踪期望轨迹,镇定误差和跟踪误差也快速、稳定地趋于零.通过定义基于积分型的Lyapunov函数,利用Lyapunov稳定性理论证明了控制系统是全局渐近稳定的.  相似文献   

19.
提出了一种基于Lyapunov稳定性的自适应控制律,使用神经网络模型综合分析非线性动力学系统的控制问题.基于Lyapunov稳定控制律开发出了一种改进的自适应神经网络控制方案,并给出了具有未知非线性一阶仿射系统的仿真控制演示,实验结果表明该神经网络自适应控制方案具有良好的非线性控制能力.  相似文献   

20.
电液伺服系统的小波自适应鲁棒反演控制   总被引:1,自引:0,他引:1  
针对电液伺服系统,提出了一种小波自适应鲁棒反演控制方法.用两个小波神经网络来逼近电液伺服系统中的模型未知部分、参数不确定项和虚拟控制的导数,所有小波神经网络的参数均实现在线调节.控制律和自适应律的设计保证了闭环系统一致且最终有界,从而达到对非线性电液伺服系统稳定跟踪控制的目的.鲁棒补偿器的设计进一步改进了电液伺服系统的跟踪性能.仿真结果表明,该方法能较好地满足控制精度的要求,同时系统具有较强的适应性和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号